Quantum-classical correspondence in many-dimensional quantum chaos.

作者: S. Adachi , M. Toda , K. Ikeda

DOI: 10.1103/PHYSREVLETT.61.659

关键词: Synchronization of chaosQuantum chaosSemiclassical physicsClassical mechanicsClassical limitMixing (physics)Limit (mathematics)PhysicsChaotic mixingQuantumQuantum mechanics

摘要: Quantum-classical correspondence in many-dimensional quantum chaos is investigated by use of a coupled kicked-rotors model. Even when the number rotors only two, results obtained are drastically different from those for single-rotor system; that is, semiclassical limit system restores essential features classical under appropriate conditions. In particular, time-reversal experiment reveals chaotic mixing recovered almost entirely; however, "conditional" sense there exists threshold recovery.

参考文章(7)
Shmuel Fishman, D. R. Grempel, R. E. Prange, Chaos, Quantum Recurrences, and Anderson Localization Physical Review Letters. ,vol. 49, pp. 509- 512 ,(1982) , 10.1103/PHYSREVLETT.49.509
G. Casati, B. V. Chirikov, I. Guarneri, D. L. Shepelyansky, Dynamical stability of quantum ``chaotic'' motion in a hydrogen atom Physical Review Letters. ,vol. 56, pp. 2437- 2440 ,(1986) , 10.1103/PHYSREVLETT.56.2437
M. Toda, K. Ikeda, Quantal Lyapunov exponent Physics Letters A. ,vol. 124, pp. 165- 169 ,(1987) , 10.1016/0375-9601(87)90245-3
N. L Balazs, A Voros, The Quantized Baker's Transformation EPL. ,vol. 4, pp. 1089- 1094 ,(1987) , 10.1209/0295-5075/4/10/001
E. Ott, T. M. Antonsen, J. D. Hanson, Effect of noise on time-dependent quantum chaos Physical Review Letters. ,vol. 53, pp. 2187- 2190 ,(1984) , 10.1103/PHYSREVLETT.53.2187
S. Adachi, M. Toda, K. Ikeda, Potential for mixing in quantum chaos. Physical Review Letters. ,vol. 61, pp. 655- 658 ,(1988) , 10.1103/PHYSREVLETT.61.655
Boris V Chirikov, A universal instability of many-dimensional oscillator systems Physics Reports. ,vol. 52, pp. 263- 379 ,(1979) , 10.1016/0370-1573(79)90023-1