Dynamical Chaos and Many-Body Quantum Systems

作者: Pierre Gaspard

DOI: 10.1007/978-94-015-7979-7_2

关键词:

摘要: Recent developments in quantum chaology and, specially this last year, have shown how to quantize bounded or scattering classically chaotic systems [1–8]. These semiclassical methods proved be most powerful not only billiards [2, 4] but also realistic atomic like the hydrogen atom a magnetic field [6], anisotropic Kepler system [1, 7], and helium [8]. Scattering resonances energy levels are obtained terms of classical periodic orbits. Depending on problem version method, they calculated as zeros function involving Selberg zeta function, poles Ruelle functions, half-integers integrated Gutzwiller trace function. impressive results solve 74-year-old raised 1917 by Einstein who criticized Bohr-Sommerfeld quantization being inapplicable non-integrable [9]. The new appear complementary EBK rules completely integrable systems.

参考文章(48)
Ioannis Antoniou, Franklin J. Lambert, Solitons and Chaos ,(1992)
Pierre Gaspard, R. Ramaswamy, M.C. Gutzwiller, Giulio Casati, H.A. Cerdeira, Bound, quasi-bound, and resonant quantum states: Dynamical, and statistical aspects Quantum Chaos:: Adriatico research conference and miniworkshop. pp. 348- 380 ,(1991)
A. Connes, H. Narnhofer, W. Thirring, Dynamical entropy of $C^*$ algebras and von Neumann algebras Communications in Mathematical Physics. ,vol. 112, pp. 691- 719 ,(1987) , 10.1007/BF01225381
Vladimir Igorevich Arnol'd, Ergodic problems of classical mechanics ,(1968)
I. Prigogine, R. Landshoff, Non-equilibrium statistical mechanics ,(1962)
G. Tanner, P. Scherer, E. Bogomolny, B. Eckhardt, D. Wintgen, Quantum eigenvalues from classical periodic orbits Physical Review Letters. ,vol. 67, pp. 2410- 2413 ,(1991) , 10.1103/PHYSREVLETT.67.2410
S. Adachi, M. Toda, K. Ikeda, Quantum-classical correspondence in many-dimensional quantum chaos. Physical Review Letters. ,vol. 61, pp. 659- 661 ,(1988) , 10.1103/PHYSREVLETT.61.659
G. Casati, I. Guarneri, D.L. Shepelyansky, Hydrogen atom in monochromatic field: chaos and dynamical photonic localization IEEE Journal of Quantum Electronics. ,vol. 24, pp. 1420- 1444 ,(1988) , 10.1109/3.982