A natural measure on the set of all universes

作者: G.W. Gibbons , S.W. Hawking , J.M. Stewart

DOI: 10.1016/0550-3213(87)90425-1

关键词: Classical mechanicsScalar field theoryCovariant Hamiltonian field theoryScalar fieldMeasure (mathematics)Scalar multiplicationInflation (cosmology)Hamiltonian systemSet (abstract data type)Theoretical physicsPhysics

摘要: Abstract We define a measure for the set of solutions hamiltonian systems with an odd number constraints. use this to show that almost all Friedmann models containing massive scalar field undergo period inflation.

参考文章(6)
V.A. Belinsky, L.P. Grishchuk, I.M. Khalatnikov, Ya.B. Zeldovich, INFLATIONARY STAGES IN COSMOLOGICAL MODELS WITH A SCALAR FIELD Physics Letters B. ,vol. 155, pp. 232- 236 ,(1985) , 10.1016/0370-2693(85)90644-6
D N Page, A fractal set of perpetually bouncing universe Classical and Quantum Gravity. ,vol. 1, pp. 417- 427 ,(1984) , 10.1088/0264-9381/1/4/015
Tsvi Piran, Ruth M. Williams, Inflation in universes with a massive scalar field Physics Letters B. ,vol. 163, pp. 331- 335 ,(1985) , 10.1016/0370-2693(85)90291-6
M. G. Bulmer, Principles of Statistics ,(1965)
Vladimir Igorevich Arnold, Mathematical methods of classical mechanics Graduate texts in mathematics. ,(1978)
A.D. Linde, Chaotic inflation Physics Letters B. ,vol. 129, pp. 177- 181 ,(1983) , 10.1016/0370-2693(83)90837-7