Design of prefilters for discrete multiwavelet transforms

作者: X.-G. Xia , J.S. Geronimo , D.P. Hardin , B.W. Suter

DOI: 10.1109/78.482009

关键词: AlgorithmFilter (signal processing)Stationary wavelet transformFilter bankDigital filterWavelet transformMathematicsHarmonic wavelet transformMathematical optimizationDiscrete wavelet transformCascade algorithm

摘要: The pyramid algorithm for computing single wavelet transform coefficients is well known. can be implemented by using tree-structured multirate filter banks. authors propose a general to compute multiwavelet adding proper premultirate banks before the vector that generate multiwavelets. proposed thought of as discrete vector-valued certain discrete-time signals. also then present some numerical experiments illustrate performance algorithm, which indicates energy compaction transforms may better than one conventional transforms.

参考文章(28)
P.N. Heller, V. Strela, G. Strang, P. Topiwala, C. Heil, L.S. Hills, Multiwavelet filter banks for data compression international symposium on circuits and systems. ,vol. 3, pp. 1796- 1799 ,(1995) , 10.1109/ISCAS.1995.523762
Peter Rieder, Jiirgen Gotze, Josef A Nossek, Multiwavelet transforms based on several scaling functions ieee sp international symposium on time frequency and time scale analysis. pp. 393- 396 ,(1994) , 10.1109/TFSA.1994.467330
M. Vetterli, G. Strang, Time-varying filter banks and multiwavelets international conference on digital signal processing. pp. 223- 226 ,(1994) , 10.1109/DSP.1994.379836
T. N. T. Goodman, S. L. Lee, W. S. Tang, Wavelets in wandering subspaces Transactions of the American Mathematical Society. ,vol. 338, pp. 639- 654 ,(1993) , 10.1090/S0002-9947-1993-1117215-0
Gilbert Strang, Orthogonal multiwavelets with vanishing moments Optical Engineering. ,vol. 33, pp. 2104- 2107 ,(1994) , 10.1117/12.172247
O. Rioul, M. Vetterli, Wavelets and signal processing IEEE Signal Processing Magazine. ,vol. 8, pp. 14- 38 ,(1991) , 10.1109/79.91217
I. Daubechies, The wavelet transform, time-frequency localization and signal analysis IEEE Transactions on Information Theory. ,vol. 36, pp. 961- 1005 ,(1990) , 10.1109/18.57199
G. Strang, V. Strela, Short wavelets and matrix dilation equations IEEE Transactions on Signal Processing. ,vol. 43, pp. 108- 115 ,(1995) , 10.1109/78.365291
Christopher Heil, Gilbert Strang, Vasily Strela, Approximation by translates of refinable functions Numerische Mathematik. ,vol. 73, pp. 75- 94 ,(1996) , 10.1007/S002110050185
Charles A. Micchelli, Yuesheng Xu, Using the Matrix Refinement Equation for the Construction of Wavelets on Invariant Sets Applied and Computational Harmonic Analysis. ,vol. 1, pp. 391- 401 ,(1994) , 10.1006/ACHA.1994.1024