On Some Discrete Quadratic Inequalities

作者: László Losonczi

DOI: 10.1007/978-3-0348-7192-1_5

关键词: PhysicsCombinatoricsMain diagonalComplex variables

摘要: Inequalities of the form $$\alpha \sum\limits_{{\text{j = 0}}}^{\text{n}} {{\text{|}}{{\text{X}}_{\text{j}}}{{\text{|}}^{\text{2}}} \leqslant \sum {{\text{|}}{{\text{X}}_{\text{j}}} \pm {{\text{X}}_{\text{j}}}{\text{ + k}}{{\text{|}}^{\text{2}}} \beta {{\text{|}}{{\text{X}}_{\text{j}}}{{\text{|}}^{\text{2}}}} } }$$ are studied, where x0, …, xn are real or complex variables, α, β constants, 1 ≤ k n, summation (with respect to j) in middle term can be understood four different ways (see introduction) and either plus minus sign is taken. The best constants found all cases. This based on determination eigen-values suitable Hermitean matrices.

参考文章(7)
Leopold Fejér, Über trigonometrische Polynome. Crelle's Journal. ,vol. 146, pp. 53- 82 ,(1916)
Ky Fan, Olga Taussky, John Todd, Discrete analogs of inequalities of Wirtinger. Monatshefte für Mathematik. ,vol. 59, pp. 73- 90 ,(1955) , 10.1007/BF01302991
Richard Ernest Bellman, Introduction to Matrix Analysis ,(1960)
Eugen v. Egerváry, Otto Szász, Einige Extremalprobleme im Bereiche der trigonometrischen Polynome Mathematische Zeitschrift. ,vol. 27, pp. 641- 652 ,(1928) , 10.1007/BF01171120
Gradimir V Milovanović, Igor Z̆ Milovanović, On Discrete inequalities of Wirtinger's Type Journal of Mathematical Analysis and Applications. ,vol. 88, pp. 378- 387 ,(1982) , 10.1016/0022-247X(82)90201-3
D. E. Rutherford, XVI.—Some Continuant Determinants arising in Physics and Chemistry—II Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 63, pp. 232- 241 ,(1948) , 10.1017/S0080454100007111
G. Szeg�, Koeffizientenabschätzungen bei ebenen und räumlichen harmonischen Entwicklungen Mathematische Annalen. ,vol. 96, pp. 601- 632 ,(1927) , 10.1007/BF01209193