On an extremal property of nonnegative trigonometric polynomials

作者: László Losonczi

DOI: 10.1007/978-3-0348-7565-3_12

关键词:

摘要: Extending an inequality of Egervary and Szasz [2] we prove that for the coefficients any nonnegative trigonometric polynomial \({T_n}\left( x \right) = {a_0}/2 + \sum\nolimits_{k 1}^n {({a_k}\;\cos \;kx {b_x}\sin \;kx) \geq 0,\;x \in [0,2\pi [,} \) $$ - {a_0}\cos \frac{\pi }{{2\left[ {\frac{{n k}}{{l k}}} \right] 3}} \leq \operatorname{Re} \;\left( {\left( {{a_k} i{b_k}} \right)\gamma \left( {{a_l} i{b_l}} \right)\delta } 3}}$$ holds, where n ≥ 2, k,l are fixed natural numbers with $$\frac{{n 1}}{2} k < l n$$ and γ, δ complex absolute value 1. In particular have $${\left( {a_k^2 b_k^2} \right)^{1/2}} {a_l^2 b_l^2} \;{a_0}\;\cos 3}}.$$ The cases equality discussed too.

参考文章(8)
László Losonczi, On Some Discrete Quadratic Inequalities General Inequalities 5. pp. 73- 85 ,(1987) , 10.1007/978-3-0348-7192-1_5
Leopold Fejér, Über trigonometrische Polynome. Crelle's Journal. ,vol. 146, pp. 53- 82 ,(1916)
L. Losonczi, Eigenvalues and eigenvectors of some tridiagonal matrices Acta Mathematica Hungarica. ,vol. 60, pp. 309- 322 ,(1992) , 10.1007/BF00051649
Ky Fan, Olga Taussky, John Todd, Discrete analogs of inequalities of Wirtinger. Monatshefte für Mathematik. ,vol. 59, pp. 73- 90 ,(1955) , 10.1007/BF01302991
Richard Ernest Bellman, Introduction to Matrix Analysis ,(1960)
Eugen v. Egerváry, Otto Szász, Einige Extremalprobleme im Bereiche der trigonometrischen Polynome Mathematische Zeitschrift. ,vol. 27, pp. 641- 652 ,(1928) , 10.1007/BF01171120
Gradimir V Milovanović, Igor Z̆ Milovanović, On Discrete inequalities of Wirtinger's Type Journal of Mathematical Analysis and Applications. ,vol. 88, pp. 378- 387 ,(1982) , 10.1016/0022-247X(82)90201-3
G. Szeg�, Koeffizientenabschätzungen bei ebenen und räumlichen harmonischen Entwicklungen Mathematische Annalen. ,vol. 96, pp. 601- 632 ,(1927) , 10.1007/BF01209193