Entropy-Energy inequalities and improved convergence rates for nonlinear parabolic equations

作者: José A. Carrillo , , Jean Dolbeault , Ivan Gentil , Ansgar Jüngel

DOI: 10.3934/DCDSB.2006.6.1027

关键词: Exponential functionMathematicsPoincaré inequalityLogarithmEntropy (arrow of time)Degenerate energy levelsNonlinear systemMathematical analysisEntropy productionParabolic partial differential equation

摘要: In this paper, we prove new functional inequalities of Poincare type on the one-dimensional torus $S^1$ and explore their implications for long-time asymptotics periodic solutions nonlinear singular or degenerate parabolic equations second fourth order. We generically a global algebraic decay an entropy functional, faster than exponential short times, asymptotically convergence positive towards average. The regime is valid larger range parameters all relevant cases application: porous medium/fast diffusion, thin film logarithmic order diffusion equations. techniques are inspired by direct entropy-entropy production methods based appropriate inequalities.

参考文章(32)
A. L. Bertozzi, THE MATHEMATICS OF MOVING CONTACT LINES IN THIN LIQUID FILMS Notices of the American Mathematical Society. ,vol. 45, pp. 689- 697 ,(1998)
Josephus Hulshof, Some Aspects of the Thin Film Equation Birkhäuser, Basel. pp. 291- 301 ,(2001) , 10.1007/978-3-0348-8266-8_25
Andrea L. Bertozzi, Michael P. Brenner, Todd F. Dupont, Leo P. Kadanoff, Singularities and similarities in interface flows Trends and perspectives in applied mathematics. ,vol. 100, pp. 155- 208 ,(1994) , 10.1007/978-1-4612-0859-4_6
Francisco Bernis, Finite speed of propagation and continuity of the interface for thin viscous flows Advances in Differential Equations. ,vol. 1, pp. 337- 368 ,(1996)
María J. Cáceres, J. A. Carrillo, G. Toscani, Long-time behavior for a nonlinear fourth-order parabolic equation Transactions of the American Mathematical Society. ,vol. 357, pp. 1161- 1175 ,(2004) , 10.1090/S0002-9947-04-03528-7
D. G. Aronson, The porous medium equation Lecture Notes in Mathematics. pp. 1- 46 ,(1986) , 10.1007/BFB0072687
Jean-Philippe Bartier, Jean Dolbeault, Convex Sobolev inequalities and spectral gap Comptes Rendus Mathematique. ,vol. 342, pp. 307- 312 ,(2006) , 10.1016/J.CRMA.2005.12.004
J.L. López, J. Soler, G. Toscani, Time rescaling and asymptotic behavior of some fourth-order degenerate diffusion equations Computers & Mathematics with Applications. ,vol. 43, pp. 721- 736 ,(2002) , 10.1016/S0898-1221(01)00316-9
B. Derrida, J. L. Lebowitz, E. R. Speer, H. Spohn, Fluctuations of a stationary nonequilibrium interface. Physical Review Letters. ,vol. 67, pp. 165- 168 ,(1991) , 10.1103/PHYSREVLETT.67.165