作者: José A. Carrillo , , Jean Dolbeault , Ivan Gentil , Ansgar Jüngel
DOI: 10.3934/DCDSB.2006.6.1027
关键词: Exponential function 、 Mathematics 、 Poincaré inequality 、 Logarithm 、 Entropy (arrow of time) 、 Degenerate energy levels 、 Nonlinear system 、 Mathematical analysis 、 Entropy production 、 Parabolic partial differential equation
摘要: In this paper, we prove new functional inequalities of Poincare type on the one-dimensional torus $S^1$ and explore their implications for long-time asymptotics periodic solutions nonlinear singular or degenerate parabolic equations second fourth order. We generically a global algebraic decay an entropy functional, faster than exponential short times, asymptotically convergence positive towards average. The regime is valid larger range parameters all relevant cases application: porous medium/fast diffusion, thin film logarithmic order diffusion equations. techniques are inspired by direct entropy-entropy production methods based appropriate inequalities.