Convex Sobolev inequalities and spectral gap

作者: Jean-Philippe Bartier , Jean Dolbeault

DOI: 10.1016/J.CRMA.2005.12.004

关键词:

摘要: This note is devoted to the proof of convex Sobolev (or generalized Poincare) inequalities which interpolate between spectral gap and logarithmic inequalities. We extend whole family results have recently been obtained by Cattiaux Carlen Loss for Under local conditions on density measure with respect a reference measure, we prove that imply all constants are uniformly bounded in limit approaching recover case as special case.

参考文章(17)
Dominique Bakry, L'hypercontractivité et son utilisation en théorie des semigroupes Springer, Berlin, Heidelberg. pp. 1- 114 ,(1994) , 10.1007/BFB0073872
Rafał Latała, Krzysztof Oleszkiewicz, Between Sobolev and Poincaré Lecture Notes in Mathematics. pp. 147- 168 ,(2000) , 10.1007/BFB0107213
Richard Holley, Daniel Stroock, Logarithmic Sobolev inequalities and stochastic Ising models Journal of Statistical Physics. ,vol. 46, pp. 1159- 1194 ,(1987) , 10.1007/BF01011161
Ivan Gentil, Arnaud Guillin, Laurent Miclo, Modified logarithmic Sobolev inequalities and transportation inequalities Probability Theory and Related Fields. ,vol. 133, pp. 409- 436 ,(2005) , 10.1007/S00440-005-0432-9
Franck Barthe, Cyril Roberto, Patrick Cattiaux, Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry Revista Matematica Iberoamericana. ,vol. 22, pp. 993- 1067 ,(2006) , 10.4171/RMI/482
S.G Bobkov, F Götze, Exponential Integrability and Transportation Cost Related to Logarithmic Sobolev Inequalities Journal of Functional Analysis. ,vol. 163, pp. 1- 28 ,(1999) , 10.1006/JFAN.1998.3326
Feng-Yu Wang, A Generalization of Poincaré and Log-Sobolev Inequalities Potential Analysis. ,vol. 22, pp. 1- 15 ,(2005) , 10.1007/S11118-003-4006-0
Patrick Cattiaux, Hypercontractivity for perturbed diffusion semigroups Annales de la Faculté des Sciences de Toulouse. ,vol. 14, pp. 609- 628 ,(2005) , 10.5802/AFST.1105
F. Barthe, C. Roberto, Sobolev inequalities for probability measures on the real line Studia Mathematica. ,vol. 159, pp. 481- 497 ,(2003) , 10.4064/SM159-3-9