Hypercontractivity for perturbed diffusion semigroups

作者: Patrick Cattiaux

DOI: 10.5802/AFST.1105

关键词:

摘要: μ etant une mesure positive satisfaisant inegalite de Sobolev logarithmique, nous donnons des conditions sur F pour que la Boltzmann v = e -2F satisfasse egalement telle (ameliorant et completant ainsi derniere partie [6]. Les obtenues sont illustres par exemples.

参考文章(10)
Michael Röckner, Feng-Yu Wang, Weak Poincaré Inequalities and L2-Convergence Rates of Markov Semigroups Journal of Functional Analysis. ,vol. 185, pp. 564- 603 ,(2001) , 10.1006/JFAN.2001.3776
S Kusuoka, D Stroock, Some boundedness properties of certain stationary diffusion semigroups Journal of Functional Analysis. ,vol. 60, pp. 243- 264 ,(1985) , 10.1016/0022-1236(85)90052-7
S. Aida, I. Shigekawa, Logarithmic Sobolev Inequalities and Spectral Gaps: Perturbation Theory Journal of Functional Analysis. ,vol. 126, pp. 448- 475 ,(1994) , 10.1006/JFAN.1994.1154
Patrick Cattiaux, A Pathwise Approach of Some Classical Inequalities Potential Analysis. ,vol. 20, pp. 361- 394 ,(2004) , 10.1023/B:POTA.0000009847.84908.6F
Jay Rosen, Sobolev Inequalities for Weight Spaces and Supercontractivity Transactions of the American Mathematical Society. ,vol. 222, pp. 367- 376 ,(1976) , 10.1090/S0002-9947-1976-0425601-7
O. Kavian, G. Kerkyacharian, B. Roynette, Some Remarks on Ultracontractivity Journal of Functional Analysis. ,vol. 111, pp. 155- 196 ,(1993) , 10.1006/JFAN.1993.1008
Jean-Dominique Deuschel, Large deviations ,(1989)