A simple proof of the Poincaré inequality for a large class of probability measures

作者: Dominique Bakry , Franck Barthe , Patrick Cattiaux , Arnaud Guillin

DOI: 10.1214/ECP.V13-1352

关键词:

摘要: Abstract. We give a simple and direct proof of the existence spectral gap under some Lyapunov type condition which is satisfied in particular by log-concave probability measures on $\mathbb{R}^n$. The based arguments introduced Bakry al, but for sake completeness, all details are provided.

参考文章(8)
S. G. Bobkov, Isoperimetric and Analytic Inequalities for Log-Concave Probability Measures Annals of Probability. ,vol. 27, pp. 1903- 1921 ,(1999) , 10.1214/AOP/1022874820
Patrick Cattiaux, Arnaud Guillin, Feng-Yu Wang, Liming Wu, Lyapunov conditions for Super Poincaré inequalities Journal of Functional Analysis. ,vol. 256, pp. 1821- 1841 ,(2009) , 10.1016/J.JFA.2009.01.003
Dominique Bakry, Patrick Cattiaux, Arnaud Guillin, Rate of convergence for ergodic continuous Markov processes : Lyapunov versus Poincaré Journal of Functional Analysis. ,vol. 254, pp. 727- 759 ,(2008) , 10.1016/J.JFA.2007.11.002
M. Ledoux, Spectral gap, logarithmic Sobolev constant, and geometric bounds Surveys in differential geometry. ,vol. 9, pp. 219- 240 ,(2004) , 10.4310/SDG.2004.V9.N1.A6
Patrick Cattiaux, Hypercontractivity for perturbed diffusion semigroups Annales de la Faculté des Sciences de Toulouse. ,vol. 14, pp. 609- 628 ,(2005) , 10.5802/AFST.1105
Liming Wu, Uniformly Integrable Operators and Large Deviations for Markov Processes Journal of Functional Analysis. ,vol. 172, pp. 301- 376 ,(2000) , 10.1006/JFAN.1999.3544
Pierre Fougères, Spectral Gap for log-Concave Probability Measures on the Real Line Lecture Notes in Mathematics. pp. 95- 123 ,(2005) , 10.1007/978-3-540-31449-3_7
Feng-Yu Wang, Arnaud Guillin, Patrick Cattiaux, Liming Wu, Lyapunov conditions for logarithmic Sobolev and Super Poincar\'e inequality arXiv: Probability. ,(2007)