NO formation rates for hydrogen combustion in stirred reactors

作者: A.A. Konnov , G. Colson , J. De Ruyck

DOI: 10.1016/S0016-2361(00)00060-0

关键词: Nitrous oxideAtmospheric temperature rangeGas compositionRadicalChemistryAnalytical chemistryContinuous stirred-tank reactorHydrogenStoichiometryCombustion

摘要: Abstract The combustion of lean, stoichiometric and rich hydrogen–air mixtures in well-stirred reactors has been modeled the temperature range 1500–2200 K employing a detailed H/N/O reaction scheme, H/O scheme together with algebraic expressions for NO production rate as function local gas composition temperature. Thermal-NO, nitrous oxide, NNH mechanisms nitric oxide formation have taken into account. It is demonstrated that explicit correctly reproduce prediction mechanism residence times longer than about 100 μs at all temperatures this study rich, lean mixtures. With time increase reduced deviates from full one 10 ms. evaluation route showed pathway important short times. At 2100 K higher thermal-NO becomes dominant after 1 ms. Sensitivity analysis clearly demonstrates validity assumptions employed development instantaneous rates hydrogen 1 to 25 ms. A possible new via N2H3 radicals identified.

参考文章(76)
Joseph W. Bozzelli, Albert Y. Chang, Anthony M. Dean, Analysis of the reactions H+N2O and NH+NO: Pathways and rate constants over a wide range of temperature and pressure Symposium (International) on Combustion. ,vol. 25, pp. 965- 974 ,(1994) , 10.1016/S0082-0784(06)80733-2
Robert A. Perry, James A. Miller, An exploratory investigation of the use of alkali metals in nitrous oxide control International Journal of Chemical Kinetics. ,vol. 28, pp. 217- 234 ,(1996) , 10.1002/(SICI)1097-4601(1996)28:3<217::AID-KIN7>3.0.CO;2-Y
Lane A Baker, Shujun Su, An ab initio molecular orbital study of the reaction NH2+NO → H2+N2O principles and practice of constraint programming. ,vol. 228, pp. 9- 16 ,(1998) , 10.1016/S0301-0104(97)00319-4
D. L. Baulch, C. J. Cobos, R. A. Cox, C. Esser, P. Frank, Th. Just, J. A. Kerr, M. J. Pilling, J. Troe, R. W. Walker, J. Warnatz, Evaluated Kinetic Data for Combustion Modelling Journal of Physical and Chemical Reference Data. ,vol. 21, pp. 411- 734 ,(1992) , 10.1063/1.555908
Wing Tsang, John T. Herron, Chemical Kinetic Data Base for Propellant Combustion I. Reactions Involving NO, NO2, HNO, HNO2, HCN and N2O Journal of Physical and Chemical Reference Data. ,vol. 20, pp. 609- 663 ,(1991) , 10.1063/1.555890
Y. He, Xiaoping Liu, M. C. Lin, C. F. Melius, Thermal reaction of HNCO with NO2 at moderate temperatures International Journal of Chemical Kinetics. ,vol. 25, pp. 845- 863 ,(1993) , 10.1002/KIN.550251006
D.L. Baulch, C.J. Cobos, R.A. Cox, P. Frank, G. Hayman, Th. Just, J.A. Kerr, T. Murrells, M.J. Pilling, J. Troe, R.W. Walker, J. Warnatz, Summary table of evaluated kinetic data for combustion modeling: Supplement 1 Combustion and Flame. ,vol. 98, pp. 59- 79 ,(1994) , 10.1016/0010-2180(94)90198-8
A.A. KONNOV, J. DE RUYCK, Kinetic modeling of the thermal decomposition of ammonia Combustion Science and Technology. ,vol. 152, pp. 23- 37 ,(2000) , 10.1080/00102200008952125
Joseph W. Bozzelli, Anthony M. Dean, O + NNH: A possible new route for NOX formation in flames International Journal of Chemical Kinetics. ,vol. 27, pp. 1097- 1109 ,(1995) , 10.1002/KIN.550271107