A New Approach to Estimate Fractal Dimension of Texture Images

作者: André R. Backes , Odemir M. Bruno

DOI: 10.1007/978-3-540-69905-7_16

关键词: Projective texture mappingFractal analysisTexture filteringImage textureTexture (geology)Artificial intelligencePattern recognitionMathematicsComputer visionFractal dimensionTexture compressionBinary image

摘要: One of the most important visual attributes for image analysis and pattern recognition is texture. Its allows to describe identify different regions in through pixel organization, performing a better description classification. This paper presents novel approach texture analysis, based on calculation fractal dimension binary images generated from texture, using threshold values. The proposed performs complexity as values changes, producing signature which able characterize efficiently classes. illustrates method performance an experiment Brodatz images.

参考文章(22)
Claude Tricot, Curves and Fractal Dimension ,(2011)
John Daugman, Cathryn Downing, Gabor wavelets for statistical pattern recognition The handbook of brain theory and neural networks. pp. 414- 420 ,(1998)
Keinosuke Fukunaga, Introduction to statistical pattern recognition (2nd ed.) Academic Press Professional, Inc.. ,(1990)
T.G. Smith, G.D. Lange, W.B. Marks, Fractal methods and results in cellular morphology--dimensions, lacunarity and multifractals. Journal of Neuroscience Methods. ,vol. 69, pp. 123- 136 ,(1996) , 10.1016/S0165-0270(96)00080-5
Mahamadou Idrissa, Marc Acheroy, Texture classification using Gabor filters Pattern Recognition Letters. ,vol. 23, pp. 1095- 1102 ,(2002) , 10.1016/S0167-8655(02)00056-9
Jian Li, Caixin Sun, Qian Du, A New Box-Counting Method for Estimation of Image Fractal Dimension international conference on image processing. pp. 3029- 3032 ,(2006) , 10.1109/ICIP.2006.313005
Ken Perlin, F. Kenton Musgrave, Steven Worley, David S. Ebert, Darwyn Peachey, Texturing and Modeling: A Procedural Approach ,(2002)
Anil K. Jain, Farshid Farrokhnia, Unsupervised texture segmentation using Gabor filters Pattern Recognition. ,vol. 24, pp. 1167- 1186 ,(1991) , 10.1016/0031-3203(91)90143-S