Large deviations properties of maximum entropy markov chains from spike trains

作者: Rodrigo Cofré , Cesar Maldonado , Fernando Rosas

DOI: 10.3390/E20080573

关键词: Rate functionStatistical physicsMarkov chainInferenceSpike trainLarge deviations theoryComputational neurosciencePrinciple of maximum entropyEntropy productionMathematics

摘要: We consider the maximum entropy Markov chain inference approach to characterize collective statistics of neuronal spike trains, focusing on statistical properties inferred model. To find chain, we use thermodynamic formalism, which provides insightful connections with physics and thermodynamics from large deviations arise naturally. provide an accessible introduction problem theory community computational neuroscience, avoiding some technicalities while preserving core ideas intuitions. review techniques useful in train describe accuracy convergence terms sampling size. these results study fluctuation correlations, distinguishability, irreversibility chains. illustrate applications using simple examples where deviation rate function is explicitly obtained for models relevance this field.

参考文章(48)
Gregor Chliamovitch, Alexandre Dupuis, Bastien Chopard, Maximum Entropy Rate Reconstruction of Markov Dynamics Entropy. ,vol. 17, pp. 3738- 3751 ,(2015) , 10.3390/E17063738
Christian Maes, The Fluctuation Theorem as a Gibbs Property Journal of Statistical Physics. ,vol. 95, pp. 367- 392 ,(1999) , 10.1023/A:1004541830999
Gašper Tkačik, Thierry Mora, Olivier Marre, Dario Amodei, Stephanie E. Palmer, Michael J. Berry, William Bialek, Thermodynamics and signatures of criticality in a network of neurons Proceedings of the National Academy of Sciences of the United States of America. ,vol. 112, pp. 11508- 11513 ,(2015) , 10.1073/PNAS.1514188112
Gašper Tkačik, Olivier Marre, Dario Amodei, Elad Schneidman, William Bialek, Michael J. Berry, Searching for Collective Behavior in a Large Network of Sensory Neurons PLoS Computational Biology. ,vol. 10, pp. e1003408- ,(2014) , 10.1371/JOURNAL.PCBI.1003408
A. A. Filyukov, V. Ya. Karpov, Method of the most probable path of evolution in the theory of stationary irreversible processes Journal of Engineering Physics. ,vol. 13, pp. 416- 419 ,(1967) , 10.1007/BF00828961
Michael W. Deem, Mathematical Adventures in Biology Physics Today. ,vol. 60, pp. 42- 47 ,(2007) , 10.1063/1.2709558
L. J. Croner, K. Purpura, E. Kaplan, Response variability in retinal ganglion cells of primates Proceedings of the National Academy of Sciences of the United States of America. ,vol. 90, pp. 8128- 8130 ,(1993) , 10.1073/PNAS.90.17.8128
E. Ferrea, A. Maccione, L. Medrihan, T. Nieus, D. Ghezzi, P. Baldelli, F. Benfenati, L. Berdondini, Large-scale, high-resolution electrophysiological imaging of field potentials in brain slices with microelectronic multielectrode arrays. Frontiers in Neural Circuits. ,vol. 6, pp. 80- 80 ,(2012) , 10.3389/FNCIR.2012.00080
Yakov G Sinai, GIBBS MEASURES IN ERGODIC THEORY Russian Mathematical Surveys. ,vol. 27, pp. 21- 69 ,(1972) , 10.1070/RM1972V027N04ABEH001383
E. T. Jaynes, Information Theory and Statistical Mechanics Physical Review. ,vol. 106, pp. 620- 630 ,(1957) , 10.1103/PHYSREV.106.620