Linear response for spiking neuronal networks with unbounded memory

作者: Rodrigo Cofre , Bruno Cessac , Ignacio Ampuero

DOI:

关键词:

摘要: We establish a general linear response relation for spiking neuronal networks, based on chains with unbounded memory. This allows us to predict the influence of weak amplitude time-dependent external stimuli spatio-temporal spike correlations, from spontaneous statistics (without stimulus) in context where memory dynamics can extend arbitrarily far past. Using this approach, we show how is explicitly related an example, gIF model, introduced by M. Rudolph and A. Destexhe. example illustrates collective effect stimuli, intrinsic dynamics, network connectivity statistics. illustrate our results numerical simulations.

参考文章(96)
Lai-Sang Young, What Are SRB Measures, and Which Dynamical Systems Have Them? Journal of Statistical Physics. ,vol. 108, pp. 733- 754 ,(2002) , 10.1023/A:1019762724717
Viviane Baladi, Linear response, or else arXiv: Dynamical Systems. ,(2014)
G. Bard Ermentrout, David H. Terman, Mathematical foundations of neuroscience Published in <b>2010</b> in New York NY) by Springer. ,vol. 35, ,(2010) , 10.1007/978-0-387-87708-2
William G. Hoover, Computational statistical mechanics ,(2012)
Hans-Otto Georgii, Gibbs Measures and Phase Transitions ,(1988)
Stephanie E. Palmer, Olivier Marre, Michael J. Berry, William Bialek, Predictive information in a sensory population Proceedings of the National Academy of Sciences of the United States of America. ,vol. 112, pp. 6908- 6913 ,(2015) , 10.1073/PNAS.1506855112
B. Cessac, J. A. Sepulchre, Transmitting a signal by amplitude modulation in a chaotic network. Chaos. ,vol. 16, pp. 013104- ,(2006) , 10.1063/1.2126813
W. Gerstner, Spiking Neuron Models Reference Module in Neuroscience and Biobehavioral Psychology#R##N#Encyclopedia of Neuroscience. pp. 277- 280 ,(2002) , 10.1016/B978-008045046-9.01405-4