Semilocal Convergence with R-Order Three Theorems for the Chebyshev Method and Its Modifications

作者: Zhanlav Tugal , Khongorzul Dorjgotov

DOI: 10.1007/978-1-4614-5131-0_21

关键词: GeneralizationOrder (ring theory)Convergence (routing)Second derivativeChebyshev iterationIterative methodApplied mathematicsMathematicsChebyshev methodNonlinear system

摘要: In this chapter we consider some modifications of the Chebyshev method that are free from second derivative and prove semilocal convergence theorems for these as well method. These two can be considered a generalization well-known iterative methods.

参考文章(14)
M. A. Hernández, Second-Derivative-Free Variant of the Chebyshev Method for Nonlinear Equations Journal of Optimization Theory and Applications. ,vol. 104, pp. 501- 515 ,(2000) , 10.1023/A:1004618223538
V. Candela, A. Marquina, Recurrence relations for rational cubic methods II: The Chebyshev method Computing. ,vol. 45, pp. 355- 367 ,(1990) , 10.1007/BF02238803
H.H.H. Homeier, On Newton-type methods with cubic convergence Journal of Computational and Applied Mathematics. ,vol. 176, pp. 425- 432 ,(2005) , 10.1016/J.CAM.2004.07.027
M.A. Hernández, M.A. Salanova, Modification of the Kantorovich assumptions for semilocal convergence of the Chebyshev method Journal of Computational and Applied Mathematics. ,vol. 126, pp. 131- 143 ,(2000) , 10.1016/S0377-0427(99)00347-7
J.A. Ezquerro, M.A. Hernández, On Halley-type iterations with free second derivative Journal of Computational and Applied Mathematics. ,vol. 170, pp. 455- 459 ,(2004) , 10.1016/J.CAM.2004.02.020
Roland Bulirsch, Josef Stoer, Introduction To Numerical Analysis ,(1956)
D.K.R. Babajee, M.Z. Dauhoo, M.T. Darvishi, A. Karami, A. Barati, Analysis of two Chebyshev-like third order methods free from second derivatives for solving systems of nonlinear equations Journal of Computational and Applied Mathematics. ,vol. 233, pp. 2002- 2012 ,(2010) , 10.1016/J.CAM.2009.09.035
T. Zhanlav, Letter to the editor: Note on the cubic decreasing region of the Chebyshev method Journal of Computational and Applied Mathematics. ,vol. 235, pp. 341- 344 ,(2010) , 10.1016/J.CAM.2010.05.034