On Newton-type methods with cubic convergence

作者: H.H.H. Homeier

DOI: 10.1016/J.CAM.2004.07.027

关键词:

摘要: Recently, there has been some progress on Newton-type methods with cubic convergence that do not require the computation of second derivatives. Weerakoon and Fernando (Appl. Math. Lett. 13 (2000) 87) derived Newton method a cubically convergent variant by rectangular trapezoidal approximations to Newton's theorem, while Frontini Sormani (J. Comput. Appl. 156 (2003) 345; 140 419 further variants using different theorem. Homeier 157 227; 169 (2004) 161) independently one latter extended it multivariate case. Here, we show can modify Werrakoon-Fernando approach theorem for inverse function derive new class methods.

参考文章(10)
H. H. H. Homeier, A modified Newton method for root finding with cubic convergence Elsevier (North Holland Publishing Company). ,(2003)
Michael B. Monagan, Gaston H. Gonnet, Keith O. Geddes, Benton Leong, Stephen M. Watt, Bruce W. Char, Maple V Library Reference Manual ,(1992)
Bruce W. Char, Maple V Language Reference Manual ,(1993)
H.H.H Homeier, A modified Newton method for rootfinding with cubic convergence Journal of Computational and Applied Mathematics. ,vol. 157, pp. 227- 230 ,(2003) , 10.1016/S0377-0427(03)00391-1
M. Frontini, E. Sormani, Modified Newton's method with third-order convergence and multiple roots Journal of Computational and Applied Mathematics. ,vol. 156, pp. 345- 354 ,(2003) , 10.1016/S0377-0427(02)00920-2
M. Frontini, E. Sormani, Some variant of Newton's method with third-order convergence Applied Mathematics and Computation. ,vol. 140, pp. 419- 426 ,(2003) , 10.1016/S0096-3003(02)00238-2
S. Weerakoon, T.G.I. Fernando, A variant of Newton's method with accelerated third-order convergence Applied Mathematics Letters. ,vol. 13, pp. 87- 93 ,(2000) , 10.1016/S0893-9659(00)00100-2
S Amat, S Busquier, J.M Gutiérrez, Geometric constructions of iterative functions to solve nonlinear equations Journal of Computational and Applied Mathematics. ,vol. 157, pp. 197- 205 ,(2003) , 10.1016/S0377-0427(03)00420-5
H.H.H Homeier, A modified Newton method with cubic convergence: the multivariate case Journal of Computational and Applied Mathematics. ,vol. 169, pp. 161- 169 ,(2004) , 10.1016/J.CAM.2003.12.041
Homeier H.H.H., A MODIFIED NEWTON METHOD WITH CUBIC CONVERGENCE: THE MULTIVARIATE CASE JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS. ,vol. 169, pp. 161- 169 ,(2004)