Impact of group mixing on disease dynamics

作者: P. van den Driessche , Lin Wang , Xingfu Zou

DOI: 10.1016/J.MBS.2010.08.008

关键词: Artificial induction of immunityStability theoryExponential stabilityMixing (physics)PopulationBiologyConstant (mathematics)Basic reproduction numberDistribution functionStatistical physicsControl theory

摘要: Abstract A general mathematical model is proposed to study the impact of group mixing in a heterogeneous host population on spread disease that confers temporary immunity upon recovery. The contains distribution functions account for probabilities individuals remain recovered class after For this model, basic reproduction number R 0 identified. It shown if 1 , then dies out sense free equilibrium globally asymptotically stable; whereas > becomes unstable. In latter case, depending and strengths, either persists at constant endemic level or exhibits sustained oscillatory behavior.

参考文章(8)
Richard K Miller, Nonlinear Volterra integral equations ,(1970)
Alun L. Lloyd, Robert M. May, Spatial Heterogeneity in Epidemic Models Journal of Theoretical Biology. ,vol. 179, pp. 1- 11 ,(1996) , 10.1006/JTBI.1996.0042
Herbert W. Hethcote, Harlan W. Stech, P. Van Den Driessche, NONLINEAR OSCILLATIONS IN EPIDEMIC MODELS Siam Journal on Applied Mathematics. ,vol. 40, pp. 1- 9 ,(1981) , 10.1137/0140001
Fred Brauer, P. van den Driessche, Lin Wang, Oscillations in a patchy environment disease model Bellman Prize in Mathematical Biosciences. ,vol. 215, pp. 1- 10 ,(2008) , 10.1016/J.MBS.2008.05.001
P. van den Driessche, James Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission Bellman Prize in Mathematical Biosciences. ,vol. 180, pp. 29- 48 ,(2002) , 10.1016/S0025-5564(02)00108-6
S. Evanusa, J. L. Brenner, D. W. Bushaw, F. R. Gantmacher, Philip M. Morse, Applications of the theory of matrices ,(1959)
Ana Lajmanovich, James A. Yorke, A deterministic model for gonorrhea in a nonhomogeneous population Mathematical Biosciences. ,vol. 28, pp. 221- 236 ,(1976) , 10.1016/0025-5564(76)90125-5