Graph Minors .XIV. Extending an Embedding

作者: N. Robertson , P.D. Seymour

DOI: 10.1006/JCTB.1995.1042

关键词: Complement graphCombinatoricsGraph powerForbidden graph characterizationDiscrete mathematicsMathematicsFactor-critical graphGraph minorNull graphGraph embeddingGraph factorization

摘要: Let G be a graph, and let H subgraph of drawn in surface ?. When can this drawing extended to an embedding the whole ?, up 3-separations? We show that if such extension is impossible, subdivision simple 3-connected graph highly "representative", then one two obstructions present. This lemma for use future paper.

参考文章(6)
N. Robertson, P.D. Seymour, Graph minors. XI.: circuits on a surface Journal of Combinatorial Theory, Series B. ,vol. 60, pp. 72- 106 ,(1994) , 10.1006/JCTB.1994.1007
Neil Robertson, P.D Seymour, Graph minors. VII. Disjoint paths on a surface Journal of Combinatorial Theory, Series B. ,vol. 45, pp. 212- 254 ,(1988) , 10.1016/0095-8956(88)90070-6
Hassler Whitney, Congruent Graphs and the Connectivity of Graphs Hassler Whitney Collected Papers. ,vol. 54, pp. 61- 79 ,(1992) , 10.1007/978-1-4612-2972-8_4
N. Robertson, P.D. Seymour, Graph minors. XII: distance on a surface Journal of Combinatorial Theory, Series B. ,vol. 64, pp. 240- 272 ,(1995) , 10.1006/JCTB.1995.1034
P.D Seymour, Neil Robertson, Graph minors: X. obstructions to tree-decomposition Journal of Combinatorial Theory, Series B. ,vol. 52, pp. 153- 190 ,(1991) , 10.1016/0095-8956(91)90061-N
Neil Robertson, P.D Seymour, Graph minors. IX. Disjoint crossed paths Journal of Combinatorial Theory, Series B. ,vol. 49, pp. 40- 77 ,(1990) , 10.1016/0095-8956(90)90063-6