Graph minors. XVI. excluding a non-planar graph

作者: Neil Robertson , P.D Seymour

DOI: 10.1016/S0095-8956(03)00042-X

关键词: MathematicsOuterplanar graphPlanar graphGraph minorCombinatoricsPolyhedral graphUniversal graphRobertson–Seymour theoremDiscrete mathematicsButterfly graphForbidden graph characterization

摘要: This paper contains the cornerstone theorem of series. We study structure graphs with no minor isomorphic to a fixed graph L, when L is non-planar. (The case planar was studied in an earlier paper.) find that every may be constructed by piecing together tree-structure each which "almost" embeds some surface cannot embedded.

参考文章(13)
Neil Robertson, P.D. Seymour, Graph Minors Journal of Combinatorial Theory, Series B. ,vol. 77, pp. 112- 148 ,(1996) , 10.1006/JCTB.1996.0059
P. Erdös, G. Szckeres, A combinatorial problem in geometry Compositio Mathematica. ,vol. 2, pp. 463- 470 ,(2009) , 10.1007/978-0-8176-4842-8_3
G. A. Dirac, A Property of 4-Chromatic Graphs and some Remarks on Critical Graphs Journal of the London Mathematical Society. ,vol. s1-27, pp. 85- 92 ,(1952) , 10.1112/JLMS/S1-27.1.85
N. Robertson, P.D. Seymour, Graph minors. XII: distance on a surface Journal of Combinatorial Theory, Series B. ,vol. 64, pp. 240- 272 ,(1995) , 10.1006/JCTB.1995.1034
N. Robertson, P.D. Seymour, Graph Minors .XIV. Extending an Embedding Journal of Combinatorial Theory, Series B. ,vol. 65, pp. 23- 50 ,(1995) , 10.1006/JCTB.1995.1042
P.D Seymour, Neil Robertson, Graph minors: X. obstructions to tree-decomposition Journal of Combinatorial Theory, Series B. ,vol. 52, pp. 153- 190 ,(1991) , 10.1016/0095-8956(91)90061-N
Neil Robertson, P.D Seymour, Graph minors. V. Excluding a planar graph Journal of Combinatorial Theory, Series B. ,vol. 41, pp. 92- 114 ,(1986) , 10.1016/0095-8956(86)90030-4
Neil Robertson, P.D Seymour, Graph minors. IX. Disjoint crossed paths Journal of Combinatorial Theory, Series B. ,vol. 49, pp. 40- 77 ,(1990) , 10.1016/0095-8956(90)90063-6
D.G Seese, W Wessel, Grids and their minors Journal of Combinatorial Theory, Series B. ,vol. 47, pp. 349- 360 ,(1989) , 10.1016/0095-8956(89)90033-6
K. Wagner, Über eine Eigenschaft der ebenen Komplexe Mathematische Annalen. ,vol. 114, pp. 570- 590 ,(1937) , 10.1007/BF01594196