Graph minors. V. Excluding a planar graph

作者: Neil Robertson , P.D Seymour

DOI: 10.1016/0095-8956(86)90030-4

关键词:

摘要: Abstract We prove that for every planar graph H there is a number w such with no minor isomorphic to can be constructed from graphs at most vertices, by piecing them together in tree structure. This has several consequences; example, it implies that: (i) if A set of member another, and some planar, then finite; (ii) fixed polynomial time algorithm test an arbitrary H; (iii) generalization theorem Erdos Posa (concerning the maximum disjoint circuits graph) structures other than circuits.

参考文章(9)
Alfréd Rényi, Vera T. Sós, Colloquium on Combinatorial Theory, Bolyai János Matematikai Társulat, Paul Erdős, Combinatorial theory and its applications János Bolyai Mathematical Society] , Distributed by North-Holland Pub. Co. ,(1970)
Fǎnicǎ Gavril, The intersection graphs of subtrees in trees are exactly the chordal graphs Journal of Combinatorial Theory, Series B. ,vol. 16, pp. 47- 56 ,(1974) , 10.1016/0095-8956(74)90094-X
Neil Robertson, P.D Seymour, Graph minors. II: Algorithmic aspects of tree-width Journal of Algorithms. ,vol. 7, pp. 309- 322 ,(1986) , 10.1016/0196-6774(86)90023-4
Neil Robertson, P.D. Seymour, Graph minors. I. Excluding a forest Journal of Combinatorial Theory, Series B. ,vol. 35, pp. 39- 61 ,(1983) , 10.1016/0095-8956(83)90079-5
G. A. Dirac, On rigid circuit graphs Abhandlungen Aus Dem Mathematischen Seminar Der Universitat Hamburg. ,vol. 25, pp. 71- 76 ,(1961) , 10.1007/BF02992776
L. Lovasz, A homology theory for spanning tress of a graph Acta Mathematica Academiae Scientiarum Hungaricae. ,vol. 30, pp. 241- 251 ,(1977) , 10.1007/BF01896190
Peter Buneman, A characterisation of rigid circuit graphs Discrete Mathematics. ,vol. 9, pp. 205- 212 ,(1974) , 10.1016/0012-365X(74)90002-8
W. T. Tutte, From matrices to graphs Canadian Journal of Mathematics. ,vol. 16, pp. 108- 127 ,(1964) , 10.4153/CJM-1964-011-0
L Pósa, None, On independent circuits contained in a graph Canadian Journal of Mathematics. ,vol. 17, pp. 347- 352 ,(1965) , 10.4153/CJM-1965-035-8