$\mathbb F$ -Rank-Width of (Edge-Colored) Graphs

作者: Mamadou Moustapha Kanté , Michael Rao

DOI: 10.1007/978-3-642-21493-6_10

关键词:

摘要: Rank-width is a complexity measure equivalent to the clique-width of undirected graphs and has good algorithmic structural properties. It in particular related vertex-minor relation. We discuss an extension notion rank-width all types - directed or not, with edge colors not -, named \(\mathbb F\)-rank-width. extend most results known for F\)-rank-width graphs: cubic-time recognition algorithm, characterisation by excluded configurations under pivot-minor, algebraic graph operations. also show that special case

参考文章(24)
Rudolf Lidl, Harald Niederreiter, Finite fields: Author Index ,(1996) , 10.1017/CBO9780511525926
A Ehrenfeucht, T Harju, G Rozenberg, The Theory of 2-Structures WORLD SCIENTIFIC. ,(1999) , 10.1142/4197
Mamadou Moustapha Kanté, Michaël Rao, Directed Rank-Width and Displit Decomposition workshop on graph-theoretic concepts in computer science. pp. 214- 225 ,(2009) , 10.1007/978-3-642-11409-0_19
Uffe Flarup, Laurent Lyaudet, On the expressive power of permanents and perfect matchings of matrices of bounded pathwidth/cliquewidth computer science symposium in russia. ,vol. 46, pp. 180- 193 ,(2008) , 10.1007/S00224-009-9241-3
Bruno Courcelle, Stephan Olariu, Upper bounds to the clique width of graphs Discrete Applied Mathematics. ,vol. 101, pp. 77- 114 ,(2000) , 10.1016/S0166-218X(99)00184-5
A. Blumensath, B. Courcelle, Recognizability, hypergraph operations, and logical types Information & Computation. ,vol. 204, pp. 853- 919 ,(2006) , 10.1016/J.IC.2005.11.006
Bruno Courcelle, Mamadou Moustapha Kanté, Graph operations characterizing rank-width Discrete Applied Mathematics. ,vol. 157, pp. 627- 640 ,(2009) , 10.1016/J.DAM.2008.08.026
André Bouchet, Digraph decompositions and Eulerian systems Siam Journal on Algebraic and Discrete Methods. ,vol. 8, pp. 323- 337 ,(1987) , 10.1137/0608028
Neil Robertson, P.D Seymour, Graph minors. V. Excluding a planar graph Journal of Combinatorial Theory, Series B. ,vol. 41, pp. 92- 114 ,(1986) , 10.1016/0095-8956(86)90030-4