Prediction-area (P-A) plot and C-A fractal analysis to classify and evaluate evidential maps for mineral prospectivity modeling

作者: Mahyar Yousefi , Emmanuel John M. Carranza

DOI: 10.1016/J.CAGEO.2015.03.007

关键词: Prediction rateProspectivity mappingFractal analysisTransformation (function)Mineral depositPlot (graphics)Spatial analysisData miningMathematicsWeighting

摘要: … and to weight evidence maps (Figs. 2d, 3d, … mineral prospectivity modeling method, proposed in this paper, is that continuous transformed spatial evidence values (ie, fuzzified evidence …

参考文章(68)
Alok Porwal, E. J. M. Carranza, M. Hale, Knowledge-Driven and Data-Driven Fuzzy Models for Predictive Mineral Potential Mapping Natural resources research. ,vol. 12, pp. 1- 25 ,(2003) , 10.1023/A:1022693220894
Pablo Mejía-Herrera, Jean-Jacques Royer, Guillaume Caumon, Alain Cheilletz, Curvature Attribute from Surface-Restoration as Predictor Variable in Kupferschiefer Copper Potentials Natural Resources Research. ,vol. 24, pp. 275- 290 ,(2015) , 10.1007/S11053-014-9247-7
Emmanuel John M. Carranza, Martin Hale, Where Are Porphyry Copper Deposits Spatially Localized? A Case Study in Benguet Province, Philippines Natural resources research. ,vol. 11, pp. 45- 59 ,(2002) , 10.1023/A:1014287720379
Alok Porwal, E. J. M. Carranza, M. Hale, Artificial Neural Networks for Mineral-Potential Mapping: A Case Study from Aravalli Province, Western India Natural resources research. ,vol. 12, pp. 155- 171 ,(2003) , 10.1023/A:1025171803637
Qiuming Cheng, F. P. Agterberg, Fuzzy Weights of Evidence Method and Its Application in Mineral Potential Mapping Natural resources research. ,vol. 8, pp. 27- 35 ,(1999) , 10.1023/A:1021677510649
Christopher M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics) Springer-Verlag New York, Inc.. ,(2006)
Mark J. Mihalasky, Graeme F. Bonham-Carter, Lithodiversity and Its Spatial Association with Metallic Mineral Sites, Great Basin of Nevada Natural resources research. ,vol. 10, pp. 209- 226 ,(2001) , 10.1023/A:1012569225111