Self-consistent thermodynamics for the Tsallis statistics in the grand canonical ensemble: Nonrelativistic hadron gas

作者: A. S. Parvan

DOI: 10.1140/EPJA/I2015-15108-X

关键词: Thermodynamic limitTsallis entropyMicrocanonical ensembleTsallis statisticsPartition function (statistical mechanics)PhysicsOpen statistical ensembleStatistical physicsCanonical ensembleGrand canonical ensemble

摘要: In the present paper, Tsallis statistics in grand canonical ensemble was reconsidered a general form. The thermodynamic properties of nonrelativistic ideal gas hadrons studied numerically and analytically finite volume limit. It proved that satisfies requirements equilibrium thermodynamics limit if potential is homogeneous function first order with respect to extensive variables state system entropic variable $z=1/(q-1)$ an state. equivalence canonical, microcanonical ensembles for demonstrated.

参考文章(44)
Tamás Sándor Biró, Is There a Temperature Is There a Temperature?: Conceptual Challenges at High Energy. ,vol. 171, ,(2011) , 10.1007/978-1-4419-8041-0
Ernesto P. Borges, Alberto S. Betzler, R. Aristides Novis, Nonextensive distributions of rotation periods and diameters of asteroids arXiv: Earth and Planetary Astrophysics. ,(2011) , 10.1051/0004-6361/201117767
A. Esquivel, A. Lazarian, Tsallis Statistics as a Tool for Studying Interstellar Turbulence The Astrophysical Journal. ,vol. 710, pp. 125- 132 ,(2010) , 10.1088/0004-637X/710/1/125
Eduard Vives, Antoni Planes, Search for charmless B → VV decays Physical Review Letters. ,vol. 88, pp. 218021- 218024 ,(2001) , 10.1103/PHYSREVLETT.88.020601
P. Braun-Munzinger, J. Stachel, Christof Wetterich, Chemical freeze-out and the QCD phase transition temperature Physics Letters B. ,vol. 596, pp. 61- 69 ,(2004) , 10.1016/J.PHYSLETB.2004.05.081
J.M. Conroy, H.G. Miller, A.R. Plastino, Thermodynamic Consistency of the $q$-Deformed Fermi-Dirac Distribution in Nonextensive Thermostatics Physics Letters A. ,vol. 374, pp. 4581- 4584 ,(2010) , 10.1016/J.PHYSLETA.2010.09.038
Constantino Tsallis, Possible generalization of Boltzmann-Gibbs statistics Journal of Statistical Physics. ,vol. 52, pp. 479- 487 ,(1988) , 10.1007/BF01016429
A. Andronic, P. Braun-Munzinger, J. Stachel, Hadron production in central nucleus–nucleus collisions at chemical freeze-out Nuclear Physics A. ,vol. 772, pp. 167- 199 ,(2006) , 10.1016/J.NUCLPHYSA.2006.03.012