Strongly proper optimums and maximal optimization in multiobjective programming

作者: C. Nuñez , Pedro Jiménez Guerra , Alejandro Balbás de la Corte

DOI:

关键词: Multiobjective programmingObject (computer science)MathematicsMathematical optimizationSensitivity (control systems)Measure (mathematics)

摘要: The main object of this paper is to give conditions under which a minimal solution problem mathematical multiobjective programming can be transformed in minimum the usual sense order relations. One most important reasons for study that measure sensitivity general easier than solution.

参考文章(9)
David G. Luenberger, Optimization by Vector Space Methods ,(1968)
H. Isermann, On some relations between a dual pair of multiple objective linear programs Zeitschrift für Operations Research. ,vol. 22, pp. 33- 41 ,(1978) , 10.1007/BF01917642
Jochem Zowe, The saddle point theorem of Kuhn and Tucker in ordered vector spaces Journal of Mathematical Analysis and Applications. ,vol. 57, pp. 41- 55 ,(1977) , 10.1016/0022-247X(77)90283-9
Helmut H. Schaefer, Topological Vector Spaces American Mathematical Monthly. ,vol. 74, pp. 12- 35 ,(1967) , 10.1007/978-1-4684-9928-5_1
Jochem Zowe, A duality theorem for a convex programming problem in order complete vector lattices Journal of Mathematical Analysis and Applications. ,vol. 50, pp. 273- 287 ,(1975) , 10.1016/0022-247X(75)90022-0
Jonathan M. Borwein, On the Existence of Pareto Efficient Points Mathematics of Operations Research. ,vol. 8, pp. 64- 73 ,(1983) , 10.1287/MOOR.8.1.64
H. Isermann, Duality in Multiple Objective Linear Programming Springer, Berlin, Heidelberg. pp. 274- 285 ,(1978) , 10.1007/978-3-642-46368-6_12
Edward J Anderson, Linear Programming In Infinite Dimensional Spaces Mugniram Bangur Memorial Engineering College, Jodhpur. ,(1970)