作者: Milan Zeleny
DOI:
关键词:
摘要: 1. Introduction.- 1.1 The Origin of the Multiobjective Problem and a Short Historical Review.- 1.2. Linear Programming.- 1.3. Comment on Notation.- Multibojective Programming I.- 2. Basic Theory Decomposition Parametric Space.- 2.1. - Case.- 2.2. Reduction Dimensionality 2.3. Space as Method to Find Nondominated Extreme Points X.- 2.4. Algorithmic Possibilities.- 2.5. Discussion Difficulties connected with Method.- 2.5.1. Some Numerical Examples Difficulties.- II.- 3. Finding A Second Approach (Multicriteria Simplex Method).- 3.1. Theorems.- 3.2. Methods for Generating Adjacent Points.- 3.3 Computerized Procedure An Example.- 3.4. Computer Analysis.- III.- 4. All Solutions X..- 4.1. Theorems Properties N.- 4.2. Algorithm N from Known Nex.- 4.3. Examples.- 4.3.1. Example Matrix Reduction.- 4.3.2. Nondominance Subroutine.- 5. Additional Topics Extensions.- 5.1. Alternative 5.1.1. Concept Cutting Hyperplane.- 5.1.2. in Lower Dimensions.- 5.2. Notes Nonlinearity.- 5.3. Selection Final Solution.- 5.3.1. Direct Assessment Weights.- 5.3.2. Ideal 5.3.3. Entropy Measure Importance.- 5.3.4. Displaced Ideal.- Appendix:.- A1. Note Elimination Redundant Constraints.- A.2. Output Printouts.- A.3. Program Description FORTRAN Printout.