Effects of aerial hypoxia and temperature on pulmonary breathing pattern and gas exchange in the South American lungfish, Lepidosiren paradoxa

作者: Glauber S.F. da Silva , Daniela A.D.N. Ventura , Lucas A. Zena , Humberto Giusti , Mogens L. Glass

DOI: 10.1016/J.CBPA.2017.03.001

关键词: Internal medicineSouth American lungfishCardiologyCarbon dioxideExpiratory TimeRespiratory systemExpirationLungfishLungBiologyAnesthesiaPulmonary diffusion

摘要: The South American lungfish Lepidosiren paradoxa is an obligatory air-breathing fish possessing well-developed bilateral lungs, and undergoing seasonal changes in its habitat, including temperature changes. In the present study we aimed to evaluate gas exchange pulmonary breathing pattern L. at different temperatures (25 30°C) inspired O2 levels (21, 12, 10, 7%). Normoxic consisted of isolated ventilatory cycles composed expiration followed by 2.4±0.2 buccal inspirations. Both expiratory inspiratory tidal volumes reached a maximum about 35mlkg-1, indicating that able nearly all lung air single cycle. At both temperatures, hypoxia caused significant increase ventilation (VE), mainly due respiratory frequency. Durations cycle were not significantly affected hypoxia. Expiratory time (but inspiratory) was shorter 30°C levels. While small change oxygen consumption (VO2) could be noticed, carbon dioxide release (VCO2, P=0.0003) convection requirement (VE/VO2, P=0.0001) (7% O2) when compared normoxia, diffusion capacity increased four-fold hypoxic exposure. These data highlight important features system paradoxa, capable matching demand supply under environmental change, as well help understand evolution lungfish.

参考文章(51)
M. L. Glass, S. C. Wood, Gas exchange and control of breathing in reptiles Physiological Reviews. ,vol. 63, pp. 232- 260 ,(1983) , 10.1152/PHYSREV.1983.63.1.232
Mary Jane Jesse, Clarence Shub, Alfred P. Fishman, Lung and gill ventilation of the African lung fish. Respiration Physiology. ,vol. 3, pp. 267- 287 ,(1967) , 10.1016/0034-5687(67)90058-8
M. L. Glass, K. Johansen, A. S. Abe, Pulmonary diffusing capacity in reptiles (Relations to temperature and O2-uptake) Journal of Comparative Physiology B-biochemical Systemic and Environmental Physiology. ,vol. 142, pp. 509- 514 ,(1981) , 10.1007/BF00688983
M. L. Glass, R. G. Boutilier, N. Heisler, Ventilatory control of arterial PO2 in the turtleChrysemys picta bellii: Effects of temperature and hypoxia Journal of Comparative Physiology B-biochemical Systemic and Environmental Physiology. ,vol. 151, pp. 145- 153 ,(1983) , 10.1007/BF00689912
Adriana Sanchez, Roseli Soncini, Tobias Wang, Pia Koldkjaer, Edwin W Taylor, Mogens L Glass, The differential cardio-respiratory responses to ambient hypoxia and systemic hypoxaemia in the South American lungfish, Lepidosiren paradoxa. Comparative Biochemistry and Physiology A-molecular & Integrative Physiology. ,vol. 130, pp. 677- 687 ,(2001) , 10.1016/S1095-6433(01)00395-6
S Orgeig, C B Daniels, The Evolutionary Significance of Pulmonary Surfactant in Lungfish (Dipnoi) American Journal of Respiratory Cell and Molecular Biology. ,vol. 13, pp. 161- 166 ,(1995) , 10.1165/AJRCMB.13.2.7626285
Donald C. Jackson, Ventilatory response to hypoxia in turtles at various temperatures. Respiration Physiology. ,vol. 18, pp. 178- 187 ,(1973) , 10.1016/0034-5687(73)90048-0
Marcos F. P. G. de Moraes, Sabine Höller, Oscar T. F. da Costa, Mogens L. Glass, Marisa N. Fernandes, Steven F. Perry, Morphometric comparison of the respiratory organs in the South American lungfish Lepidosiren paradoxa (Dipnoi). Physiological and Biochemical Zoology. ,vol. 78, pp. 546- 559 ,(2005) , 10.1086/430686