Vapor-liquid-solid growth of Si nanowires: A kinetic analysis

作者: Dhayalan Shakthivel , Srinivasan Raghavan

DOI: 10.1063/1.4737597

关键词: ThermodynamicsSteady stateSupersaturationRadiusMaterials scienceRate-determining stepNucleationTriple phase boundaryEvaporationGrowth rateNanotechnology

摘要: A steady state kinetic model has been developed for the vapor-liquid-solid growth of Si whiskers or nanowires from liquid catalyst droplets. The is defined as one in which net injection rate into droplet equal to ejection due wire growth. Expressions that represent specific mechanisms and atoms have used their relative importance discussed. analysis shows evaporation reverse reaction rates need be invoked, apart just surface cracking precursor, order make radius dependent. When these pathways can neglected, become independent determine activation energies limiting step heterogeneous precursor decomposition. depend on mechanism at liquid-solid interface liquid-solid-vapor triple phase boundary. It shown when by nucleation motion ledges, a dependence does not come Gibbs-Thompson effect supersaturation liquid, but also actual area length available nucleation. Growth calculated using framework equations compared with experimental results. agreement trends found excellent. same account diverse pressure temperature reported literature. © 2012 American Institute Physics.

参考文章(32)
Yu. K. Shchipalov, Surface Energy of Crystalline and Vitreous Silica Glass and Ceramics. ,vol. 57, pp. 374- 377 ,(2000) , 10.1023/A:1010900903019
Frank Glas, Jean-Christophe Harmand, Gilles Patriarche, Nucleation Antibunching in Catalyst-Assisted Nanowire Growth Physical Review Letters. ,vol. 104, pp. 135501- ,(2010) , 10.1103/PHYSREVLETT.104.135501
V. G. Dubrovskii, N. V. Sibirev, G. E. Cirlin, J. C. Harmand, V. M. Ustinov, Theoretical analysis of the vapor-liquid-solid mechanism of nanowire growth during molecular beam epitaxy. Physical Review E. ,vol. 73, pp. 021603- ,(2006) , 10.1103/PHYSREVE.73.021603
V.G. Dubrovskii, N.V. Sibirev, General form of the dependences of nanowire growth rate on the nanowire radius Journal of Crystal Growth. ,vol. 304, pp. 504- 513 ,(2007) , 10.1016/J.JCRYSGRO.2007.03.034
V. G. Dubrovskii, N. V. Sibirev, G. E. Cirlin, I. P. Soshnikov, W. H. Chen, R. Larde, E. Cadel, P. Pareige, T. Xu, B. Grandidier, J.-P. Nys, D. Stievenard, M. Moewe, L. C. Chuang, C. Chang-Hasnain, Gibbs-Thomson and diffusion-induced contributions to the growth rate of Si, InP, and GaAs nanowires Physical Review B. ,vol. 79, pp. 205316- ,(2009) , 10.1103/PHYSREVB.79.205316
L. Zambov, Kinetics of homogeneous decomposition of silane Journal of Crystal Growth. ,vol. 125, pp. 164- 174 ,(1992) , 10.1016/0022-0248(92)90331-C
Teh Y. Tan, Na Li, Ulrich Gösele, Is there a thermodynamic size limit of nanowires grown by the vapor-liquid-solid process? Applied Physics Letters. ,vol. 83, pp. 1199- 1201 ,(2003) , 10.1063/1.1599984
E.I. Givargizov, Fundamental aspects of VLS growth Journal of Crystal Growth. ,vol. 31, pp. 20- 30 ,(1975) , 10.1016/0022-0248(75)90105-0
Wayne Y. Fung, Wei Lu, Growth and electrical properties of Al-catalyzed Si nanowires Applied Physics Letters. ,vol. 98, pp. 033108- ,(2011) , 10.1063/1.3544933
Huaizhou Zhao, Sa Zhou, Zainul Hasanali, Dunwei Wang, Influence of Pressure on Silicon Nanowire Growth Kinetics Journal of Physical Chemistry C. ,vol. 112, pp. 5695- 5698 ,(2008) , 10.1021/JP8000256