Chaotic properties of the soft-disk Lorentz gas.

作者: J.C. Kimball

DOI: 10.1103/PHYSREVE.63.066216

关键词: Four-momentumMechanicsParticlePhysicsScatteringBallistic conductionChaoticKinetic theory of gasesPoint particleClassical mechanicsLorentz transformation

摘要: The traditional hard-disk Lorentz gas describes the chaotic motion of a classical point particle through an array impenetrable disks. Soft-disk modifications two-dimensional gas, where scattering can move into disk interiors, are considered here. Conditions on soft-disk potentials and separations that guarantee obtained.

参考文章(10)
Victor J. Donnay, NON-ERGODICITY OF TWO PARTICLES INTERACTING VIA A SMOOTH POTENTIAL Journal of Statistical Physics. ,vol. 96, pp. 1021- 1048 ,(1999) , 10.1023/A:1004688200435
T. E. Wainwright, B. J. Alder, D. M. Gass, Decay of Time Correlations in Two Dimensions Physical Review A. ,vol. 4, pp. 233- 237 ,(1971) , 10.1103/PHYSREVA.4.233
L. A. Bunimovich, Ya. G. Sinai, Statistical properties of Lorentz gas with periodic configuration of scatterers Communications in Mathematical Physics. ,vol. 78, pp. 479- 497 ,(1981) , 10.1007/BF02046760
L A Bunimovich, Yakov G Sinai, N I Chernov, Statistical properties of two-dimensional hyperbolic billiards Russian Mathematical Surveys. ,vol. 46, pp. 47- 106 ,(1991) , 10.1070/RM1991V046N04ABEH002827
T. Geisel, A. Zacherl, G. Radons, Generic1fNoise in Chaotic Hamiltonian Dynamics Physical Review Letters. ,vol. 59, pp. 2503- 2506 ,(1987) , 10.1103/PHYSREVLETT.59.2503
T. Geisel, A. Zacherl, G. Radons, Chaotic diffusion and 1/f-noise of particles in two-dimensional solids European Physical Journal B. ,vol. 71, pp. 117- 127 ,(1988) , 10.1007/BF01310851
N. I. Chernov, C. Haskell, Nonuniformly hyperbolic K-systems are Bernoulli Ergodic Theory and Dynamical Systems. ,vol. 16, pp. 19- 44 ,(1996) , 10.1017/S0143385700008695
P. L. Krapivsky, S. Redner, SLOWLY DIVERGENT DRIFT IN THE FIELD-DRIVEN LORENTZ GAS Physical Review E. ,vol. 56, pp. 3822- 3830 ,(1997) , 10.1103/PHYSREVE.56.3822
Nándor Simányi, Ergodicity of hard spheres in a box Ergodic Theory and Dynamical Systems. ,vol. 19, pp. 741- 766 ,(1999) , 10.1017/S0143385799133935
NÁNDOR SIMÁNYI, Ergodicity of hard spheres in a box arXiv: Dynamical Systems. ,(1997) , 10.1017/S0143385799133935