Nonuniformly hyperbolic K-systems are Bernoulli

作者: N. I. Chernov , C. Haskell

DOI: 10.1017/S0143385700008695

关键词:

摘要: We prove that those non-uniformly hyperbolic maps and flows (with singularities) enjoy the K-property are also Bernoulli. In particular, many billiard systems, including systems of hard balls stadia have K-property, billiards, such as Lorentz gas in any dimension, obtain Bernoulli property for both associated on boundary phase space.

参考文章(35)
D. S. Ornstein, Imbedding Bernoulli shifts in flows Springer Berlin Heidelberg. pp. 178- 218 ,(1970) , 10.1007/BFB0060654
Anatole Katok, Jean-Marie Strelcyn, Feliks Przytycki, François Ledrappier, Invariant Manifolds, Entropy and Billiards: Smooth Maps With Singularities ,(1986)
Izumi Kubo, Hiroshi Murata, Perturbed billiard systems II. Bernoulli properties Nagoya Mathematical Journal. ,vol. 81, pp. 1- 25 ,(1981) , 10.1017/S0027763000019127
Maciej Wojtkowski, Principles for the design of billiards with nonvanishing Lyapunov exponents Communications in Mathematical Physics. ,vol. 105, pp. 391- 414 ,(1986) , 10.1007/BF01205934
N. I. Chernov, Statistical properties of the periodic Lorentz gas. Multidimensional case Journal of Statistical Physics. ,vol. 74, pp. 11- 53 ,(1994) , 10.1007/BF02186805
Rufus Bowen, Bernoulli maps of the interval Israel Journal of Mathematics. ,vol. 28, pp. 161- 168 ,(1977) , 10.1007/BF02759791
Donald Ornstein, Bernoulli shifts with the same entropy are isomorphic Advances in Mathematics. ,vol. 4, pp. 337- 352 ,(1970) , 10.1016/0001-8708(70)90029-0
M. Ratner, Anosov flows with gibbs measures are also Bernoullian Israel Journal of Mathematics. ,vol. 17, pp. 380- 391 ,(1974) , 10.1007/BF02757140
L A Bunimovič, ON A CLASS OF SPECIAL FLOWS Mathematics of The Ussr-izvestiya. ,vol. 8, pp. 219- 232 ,(1974) , 10.1070/IM1974V008N01ABEH002102
Ya B Pesin, CHARACTERISTIC LYAPUNOV EXPONENTS AND SMOOTH ERGODIC THEORY Russian Mathematical Surveys. ,vol. 32, pp. 55- 114 ,(1977) , 10.1070/RM1977V032N04ABEH001639