Singularities and nonhyperbolic manifolds do not coincide

作者: Nandor Simanyi

DOI: 10.1088/0951-7715/26/6/1703

关键词:

摘要: We consider the billiard flow of elastically colliding hard balls on flat $\nu$-torus ($\nu\ge 2$), and prove that no singularity manifold can even locally coincide with a describing future non-hyperbolicity trajectories. As corollary, we obtain ergodicity (actually Bernoulli mixing property) all such systems, i.e. verification Boltzmann-Sinai Ergodic Hypothesis.

参考文章(16)
Nandor Simanyi, None, The K-property of N billiard balls II. Computation of neutral linear spaces Inventiones Mathematicae. ,vol. 110, pp. 151- 172 ,(1992) , 10.1007/BF01231329
Nándor Simányi, The K-property of N billiard balls I Inventiones Mathematicae. ,vol. 108, pp. 521- 548 ,(1992) , 10.1007/BF02100616
NÁNDOR SIMÁNYI, DOMOKOS SZÁSZ, Non-integrability of cylindric billiards and transitive Lie group actions Ergodic Theory and Dynamical Systems. ,vol. 20, pp. 593- 610 ,(2000) , 10.1017/S0143385700000304
Nandor Simanyi, Domokos Szasz, Hard ball systems are completely hyperbolic Annals of Mathematics. ,vol. 149, pp. 35- 96 ,(1999) , 10.2307/121019
A. Krámli, N. Simányi, D. Szász, The $K$-property of four billiard balls Communications in Mathematical Physics. ,vol. 144, pp. 107- 148 ,(1992) , 10.1007/BF02099193
A. Krámli, N. Simányi, D. Szász, A “Transversal” Fundamental Theorem for semi-dispersing billiards Communications in Mathematical Physics. ,vol. 129, pp. 535- 560 ,(1990) , 10.1007/BF02099675
DONALD ORNSTEIN, BENJAMIN WEISS, On the Bernoulli nature of systems with some hyperbolic structure Ergodic Theory and Dynamical Systems. ,vol. 18, pp. 441- 456 ,(1998) , 10.1017/S0143385798100354
Yakov G Sinai, N I Chernov, Ergodic properties of certain systems of two-dimensional discs and three-dimensional balls Russian Mathematical Surveys. ,vol. 42, pp. 181- 207 ,(1987) , 10.1070/RM1987V042N03ABEH001421
N. I. Chernov, C. Haskell, Nonuniformly hyperbolic K-systems are Bernoulli Ergodic Theory and Dynamical Systems. ,vol. 16, pp. 19- 44 ,(1996) , 10.1017/S0143385700008695