Effects of cadmium exposure on critical temperatures of aerobic metabolism in eastern oysters Crassostrea virginica (Gmelin, 1791).

作者: Rita Bagwe , Elia Beniash , Inna M. Sokolova

DOI: 10.1016/J.AQUATOX.2015.07.012

关键词: ToxicityCellular respirationBioenergeticsCadmiumCrassostreaBotanyOxidative stressAnaerobic exerciseAnimal scienceBiologyPhosphagen

摘要: Cadmium (Cd) and elevated temperatures are common stressors in estuarine coastal environments. Elevated temperature can sensitize organisms to the toxicity of metals such as Cd vice versa, but physiological mechanisms temperature-Cd interactions not well understood. We tested a hypothesis that interactive effects stress involve Cd-induced reduction aerobic scope an organism thereby narrowing thermal tolerance window oysters. determined prolonged exposure (50 μg l(-1)for 30 days) on upper critical metabolism (assessed by accumulation anaerobic end products L-alanine, succinate acetate), cellular energy status tissue levels adenylates, phosphagen/aphosphagen glycogen lipid reserves) oxidative damage during acute rise (20-36 °C) eastern oysters Crassostrea virginica. The (TcII) was shifted lower values (from 28 24 Cd-exposed spring both control groups winter (24 <20 °C, respectively). This indicates associated with decrease early transition partial anaerobiosis. Acute warming had no negative reserves or parameters (except adenylate content at extreme 36 led increase lesions proteins temperatures. These data show anaerobiosis (indicated products) is most sensitive biomarker temperature-induced energetically non-sustainable state oysters, whereas disturbances (i.e. decline phosphagen levels) ensue considerably higher temperatures, nearing lethal range. study long-term environmentally relevant may their sensitivity seasonal and/or global climate change polluted estuaries.

参考文章(61)
Jerome O. Nriagu, John B. Sprague, Cadmium in the aquatic environment John Wiley and Sons, Inc.,New York, NJ. ,(1987)
H. O. Portner, A. P. Farrell, Physiology and Climate Change Science. ,vol. 322, pp. 690- 692 ,(2008) , 10.1126/SCIENCE.1163156
M. K. Grieshaber, I. Hardewig, U. Kreutzer, H.-O. Pörtner, Physiological and metabolic responses to hypoxia in invertebrates Reviews of Physiology Biochemistry and Pharmacology. ,vol. 125, pp. 43- 147 ,(1993) , 10.1007/BFB0030909
Xiu-Yan Li, Ching K. Chow, An improved method for the measurement of malondialdehyde in biological samples Lipids. ,vol. 29, pp. 73- 75 ,(1994) , 10.1007/BF02537094
M. T. Burrows, D. S. Schoeman, L. B. Buckley, P. Moore, E. S. Poloczanska, K. M. Brander, C. Brown, J. F. Bruno, C. M. Duarte, B. S. Halpern, J. Holding, C. V. Kappel, W. Kiessling, M. I. O'Connor, J. M. Pandolfi, C. Parmesan, F. B. Schwing, W. J. Sydeman, A. J. Richardson, The pace of shifting climate in marine and terrestrial ecosystems. Science. ,vol. 334, pp. 652- 655 ,(2011) , 10.1126/SCIENCE.1210288
Brendon J. Dunphy, Ellie Watts, Norman L. C. Ragg, Identifying Thermally-Stressed Adult Green-Lipped Mussels (Perna canaliculus Gmelin, 1791) via Metabolomic Profiling* American Malacological Bulletin. ,vol. 33, pp. 127- 135 ,(2015) , 10.4003/006.033.0110
Francisco Bozinovic, Hans‐Otto Pörtner, None, Physiological ecology meets climate change Ecology and Evolution. ,vol. 5, pp. 1025- 1030 ,(2015) , 10.1002/ECE3.1403
F Regoli, C Cerrano, E Chierici, MC Chiantore, G Bavestrello, Seasonal variability of prooxidant pressure and antioxidant adaptation to symbiosis in the Mediterranean demosponge Petrosia ficiformis Marine Ecology Progress Series. ,vol. 275, pp. 129- 137 ,(2004) , 10.3354/MEPS275129
Doris Schiedek, Brita Sundelin, James W. Readman, Robie W. Macdonald, Interactions between climate change and contaminants Marine Pollution Bulletin. ,vol. 54, pp. 1845- 1856 ,(2007) , 10.1016/J.MARPOLBUL.2007.09.020