The Sequential Parameter Optimization Toolbox

作者: Thomas Bartz-Beielstein , Christian Lasarczyk , Mike Preuss

DOI: 10.1007/978-3-642-02538-9_14

关键词: ToolboxAlgorithmComputer scienceSteep descentSequential parameter optimizationMetamodelingMathematical optimizationHeuristicsContinuous optimizationOptimization problemPlug-in

摘要: The sequential parameter optimization toolbox (SPOT) is one possible implementation of the SPO framework introduced in Chap. 2. It has been successfully applied to numerous heuristics for practical and theoretical problems. We describe mechanics interfaces employed by SPOT enable users plug their own algorithms. Furthermore, two case studies are presented demonstrate how can be practice, followed a discussion alternative metamodels plugged into it.We conclude with some general guidelines.

参考文章(42)
Thomas Bartz-Beielstein, Daniel Blum, Jürgen Branke, Particle Swarm Optimization and Sequential Sampling in Noisy Environments Metaheuristics. pp. 261- 273 ,(2007) , 10.1007/978-0-387-71921-4_14
Thomas Bartz-Beielstein, K. E. Parsopoulos, M. N. Vrahatis, M. de Vegt, Designing particle swarm optimization with regression trees Universität Dortmund. ,(2004) , 10.17877/DE290R-5432
Jörn Mehnen, Thomas Michelitsch, Christian Lasarczyk, Thomas Bartz-Beielstein, Multi-objective evolutionary design of mold temperature control using DACE for parameter optimization International Journal of Applied Electromagnetics and Mechanics. ,vol. 25, pp. 661- 667 ,(2007) , 10.3233/JAE-2007-832
P. Armitage, Sequential medical trials. 2nd edition. Sequential medical trials. 2nd edition.. ,(1975)
C. Stoean, M. Preuss, R. Gorunescu, D. Dumitrescu, Elitist generational genetic chromodynamics - a new radii-based evolutionary algorithm for multimodal optimization congress on evolutionary computation. ,vol. 2, pp. 1839- 1846 ,(2005) , 10.1109/CEC.2005.1554911
Hans Georg Beyer, The Theory of Evolution Strategies ,(2001)
Thomas Bartz-Beielstein, Mike Preuss, Sandor Markon, Validation and Optimization of an Elevator Simulation Model with Modern Search Heuristics Springer, Boston, MA. pp. 109- 128 ,(2005) , 10.1007/0-387-25383-1_5