Which special functions of bounded deformation have bounded variation

作者: Sergio Conti , Matteo Focardi , Flaviana Iurlano

DOI: 10.1017/S030821051700004X

关键词: Special functionsBounded variationPiecewise affineMathematicsAlmost everywherePartition (number theory)Bounded deformationPure mathematicsJump

摘要: Functions of bounded deformation (BD) arise naturally in the study fracture and damage a geometrically linear context. They are related to functions variation (BV), but less well understood. We discuss here relation BV under additional regularity assumptions, which may require regular part strain have higher integrability or jump set finite area Cantor vanish. On positive side, we prove that BD piecewise affine on Caccioppoli partition GSBV, SBD p approximately continuous -almost everywhere away from set. negative construct function is not has distributional consisting only part, one part.

参考文章(29)
Fabrice Bethuel, Gerhard Huisken, Stefan Müller, Klaus Steffen, Stefan Müller, None, Variational models for microstructure and phase transitions Springer, Berlin, Heidelberg. pp. 85- 210 ,(1999) , 10.1007/BFB0092670
Roger Temam, Problèmes mathématiques en plasticité Gauthier-Villars. ,(1983)
Andrea Braides, Anneliese Defranceschi, Enrico Vitali, Relaxation of elastic energies with free discontinuities and constraint on the strain Annali Della Scuola Normale Superiore Di Pisa-classe Di Scienze. ,vol. 1, pp. 275- 317 ,(2002)
Diego Pallara, Luigi Ambrosio, Nicola Fusco, Functions of Bounded Variation and Free Discontinuity Problems ,(2000)
Luigi Ambrosio, Alessandra Coscia, Gianni Dal Maso, Fine Properties of Functions with Bounded Deformation Archive for Rational Mechanics and Analysis. ,vol. 139, pp. 201- 238 ,(1997) , 10.1007/S002050050051
Antonin Chambolle, A Density Result in Two-Dimensional Linearized Elasticity, and Applications Archive for Rational Mechanics and Analysis. ,vol. 167, pp. 211- 233 ,(2003) , 10.1007/S00205-002-0240-7
Bernd Schmidt, Fernando Fraternali, Michael Ortiz, Eigenfracture: An Eigendeformation Approach to Variational Fracture Multiscale Modeling & Simulation. ,vol. 7, pp. 1237- 1266 ,(2009) , 10.1137/080712568
G. Bellettini, A. Coscia, G. Dal Maso, Compactness and lower semicontinuity properties in SBD(Omega) Mathematische Zeitschrift. ,vol. 228, pp. 337- 351 ,(1998) , 10.1007/PL00004617
Roger Temam, Gilbert Strang, Functions of bounded deformation Archive for Rational Mechanics and Analysis. ,vol. 75, pp. 7- 21 ,(1980) , 10.1007/BF00284617
Bernd Kirchheim, Jan Kristensen, Automatic convexity of rank-1 convex functions☆ Comptes Rendus Mathematique. ,vol. 349, pp. 407- 409 ,(2011) , 10.1016/J.CRMA.2011.03.013