Imputing Missing Data for Gene Expression Arrays

作者: Robert Tibshirani , Trevor Hastie , Gavin Sherlock , David Botstein , Patrick Brown

DOI:

关键词: Missing dataComputer scienceComplete dataRegression functionImputation (statistics)Genealogy

摘要: The singular value decomposition offers an interesting and stable method for imputation of missing values in gene expression arrays. basic paradigm is • Learn a set basis functions or eigen-genes from the complete data. Impute cells by regressing its non-missing entries on eigen-genes, use regression function to predict at locations. ∗Depts. Statistics, Health, Research & Policy, Sequoia Hall, Stanford Univ., CA 94305. hastie@stat.stanford.edu †Depts. Univ, tibs@stat.stanford.edu ‡Life Sciences Division, Lawrence Orlando Berkeley National Labs Dept. Molecular. Cell Biology, University California. Berk.; eisen@genome.stanford.edu; §Department Biochemistry, University;pbrown@cmgm.stanford.edu ¶Department Genetics, University;botstein@genome.stanford.edu

参考文章(1)
Troyanskaya Olga, Cantor Michael, Shelock Gavin, Brown Pat, Hastie Trevor, Tibshirani Robert, Botstein David, None, Missing value estimation methods for DNA microarrays. Bioinformatics. ,vol. 17, pp. 520- 525 ,(2001) , 10.1093/BIOINFORMATICS/17.6.520