Localization length in a quasi-one-dimensional disordered system in the presence of an electric field

作者: Vladimir Gasparian , Marc Cahay , Esther Jódar

DOI: 10.1088/0953-8984/23/4/045301

关键词: Universal curvePower lawCondensed matter physicsPhysicsMesoscopic physicsInverseElectric fieldParticle in a one-dimensional latticeExponential functionQuasi one dimensional

摘要: A two-dimensional ?-potential Kronig?Penney model for quasi-one-dimensional (Q1D) disordered systems is used to study analytically the influence of a constant electric field on inverse localization length (LL). Based Green's function formalism we have calculated LL as incoming energy E, F, L Q1D sample, number modes M in transverse direction and amount disorder w. We show that, large systems, states are weakly localized, i.e.?we deal with power-law localization. With increasing mesoscopic transition from exponential behavior takes place, 1D systems. note that graphs showing change significantly F (for fixed M) rather than F). also representing ratio corresponding without collapse all into universal curve strip model.

参考文章(33)
Keith Slevin, Yoichi Asada, Lev I. Deych, Fluctuations of the Lyapunov exponent in two-dimensional disordered systems Physical Review B. ,vol. 70, pp. 054201- ,(2004) , 10.1103/PHYSREVB.70.054201
C. M. Soukoulis, Jorge V. José, E. N. Economou, Ping Sheng, Localization in One-Dimensional Disordered Systems in the Presence of an Electric Field Physical Review Letters. ,vol. 50, pp. 764- 767 ,(1983) , 10.1103/PHYSREVLETT.50.764
Francois Delyon, Barry Simon, Bernard Souillard, From Power-Localized to Extended States in a Class of One-Dimensional Disordered Systems Physical Review Letters. ,vol. 52, pp. 2187- 2189 ,(1984) , 10.1103/PHYSREVLETT.52.2187
Daniel Boese, Markus Lischka, L. E. Reichl, Resonances in a two-dimensional electron waveguide with a single δ -function scatterer Physical Review B. ,vol. 61, pp. 5632- 5636 ,(2000) , 10.1103/PHYSREVB.61.5632
MASAKI GODA, MARK YA. AZBEL, HIROAKI YAMADA, NON-EXPONENTIALLY LOCALIZED STATES IN A TWO-DIMENSIONAL DISORDERED SYSTEM? International Journal of Modern Physics B. ,vol. 13, pp. 2705- 2725 ,(1999) , 10.1142/S0217979299002605
M Schreiber, M Ottomeier, Localization of electronic states in 2D disordered systems Journal of Physics: Condensed Matter. ,vol. 4, pp. 1959- 1971 ,(1992) , 10.1088/0953-8984/4/8/011
P. Upadhyaya, S. Pramanik, S. Bandyopadhyay, M. Cahay, Magnetic field effects on spin texturing in a quantum wire with Rashba spin-orbit interaction Physical Review B. ,vol. 77, pp. 045306- ,(2008) , 10.1103/PHYSREVB.77.045306
O. Bleibaum, H. Böttger, V. V. Bryksin, P. Kleinert, Theory of Anderson localization in an electric field. Physical Review B. ,vol. 52, pp. 16494- 16502 ,(1995) , 10.1103/PHYSREVB.52.16494
M Kaveh, A diffusive-hopping transition in a disordered two-dimensional system Journal of Physics C: Solid State Physics. ,vol. 18, pp. 4165- 4172 ,(1985) , 10.1088/0022-3719/18/21/012
Ernesto Cota, Jorge V. José, M. Ya. Azbel, Delocalization transition in random electrified chains with arbitrary potentials. Physical Review B. ,vol. 32, pp. 6157- 6165 ,(1985) , 10.1103/PHYSREVB.32.6157