Efficient subquadratic parallel multiplier based on modified SPB of GF(2 m )

作者: Jeng-Shyang Pan , Pramod Kumar Meher , Chiou-Yng Lee , Hong-Hai Bai

DOI: 10.1109/ISCAS.2015.7168912

关键词: Binary numberToeplitz matrixDiscrete mathematicsMultiplier (economics)TrinomialPolynomial basisGF(2)Matrix decompositionMathematicsKaratsuba algorithm

摘要: Toeplitz matrix-vector product (TMVP) approach is a special case of Karatsuba algorithm to design subquadratic multiplier in GF(2m). In binary extension fields, shifted polynomial basis (SPB) variable representation, and widely studied. SPB multiplication using coordinate transformation technique can transform TMVP formulas, however, this only applied for the field constructed by all trinomials or class pentanomials. For reason, we present new modified an arbitrary irreducible pentanomial, proposed scheme has formed formula.

参考文章(12)
Jean-Luc Beuchat, Nicolas Brisebarre, Jérémie Detrey, Eiji Okamoto, Francisco Rodríguez-Henríquez, A Comparison between Hardware Accelerators for the Modified Tate Pairing over $\mathbb{F}_{2^m}$ and $\mathbb{F}_{3^m}$ Pairing-Based Cryptography – Pairing 2008. ,vol. 5209, pp. 297- 315 ,(2008) , 10.1007/978-3-540-85538-5_20
José L. Imaña, Román Hermida, Francisco Tirado, Low complexity bit-parallel polynomial basis multipliers over binary fields for special irreducible pentanomials Integration. ,vol. 46, pp. 197- 210 ,(2013) , 10.1016/J.VLSI.2011.12.006
M. Anwar Hasan, C. Negre, Multiway Splitting Method for Toeplitz Matrix Vector Product IEEE Transactions on Computers. ,vol. 62, pp. 1467- 1471 ,(2013) , 10.1109/TC.2012.95
Chiou-Yng Lee, Che Wun Chiou, Scalable Gaussian Normal Basis Multipliers over GF(2 m ) Using Hankel Matrix-Vector Representation Journal of Signal Processing Systems. ,vol. 69, pp. 197- 211 ,(2012) , 10.1007/S11265-011-0654-2
A. Cilardo, Fast Parallel GF(2^m) Polynomial Multiplication for All Degrees IEEE Transactions on Computers. ,vol. 62, pp. 929- 943 ,(2013) , 10.1109/TC.2012.63
Haining Fan, Yiqi Dai, Fast bit-parallel GF(2/sup n/) multiplier for all trinomials IEEE Transactions on Computers. ,vol. 54, pp. 485- 490 ,(2005) , 10.1109/TC.2005.64
B. Sunar, A generalized method for constructing subquadratic complexity GF(2/sup k/) multipliers IEEE Transactions on Computers. ,vol. 53, pp. 1097- 1105 ,(2004) , 10.1109/TC.2004.52
M.A. Hasan, V.K. Bhargava, Architecture for a low complexity rate-adaptive Reed-Solomon encoder IEEE Transactions on Computers. ,vol. 44, pp. 938- 942 ,(1995) , 10.1109/12.392853