Low-Latency Digit-Serial Systolic Double Basis Multiplier over $\mbi GF{(2^m})$ Using Subquadratic Toeplitz Matrix-Vector Product Approach

作者:

DOI: 10.1109/TC.2012.239

关键词:

摘要: Recently in cryptography and security, the multipliers with subquadratic space complexity for trinomials some specific pentanomials have been proposed. For such kind of multipliers, alternatively, we use double basis multiplication which combines polynomial modified to develop a new efficient digit-serial systolic multiplier. The proposed multiplier depends on almost equally (AESPs), utilizes Toeplitz matrix-vector product scheme derive low-latency architecture. If selected digit-size is $d$ bits, both polynomials, i.e., AESPs, requires latency $2\left\lceil \!{\sqrt {{m \over d}}} \right\rceil\! $ , while traditional ones take at least $O\left({\left\lceil d}} \right\rceil} \right)$ clock cycles. Analytical application-specific integrated circuit (ASIC) synthesis results indicate that area time \times complexities our architecture are significantly lower than existing multipliers.

参考文章(23)
Arash Hariri, Arash Reyhani-Masoleh, Digit-Serial Structures for the Shifted Polynomial Basis Multiplication over Binary Extension Fields international conference on arithmetic of finite fields. pp. 103- 116 ,(2008) , 10.1007/978-3-540-69499-1_9
Janusz Rajski, Jerzy Tyszer, Primitive Polynomials Over GF(2) of Degree up to 660 with Uniformly Distributed Coefficients Journal of Electronic Testing. ,vol. 19, pp. 645- 657 ,(2003) , 10.1023/A:1027422805851
Julio López, Ricardo Dahab, Improved Algorithms for Elliptic Curve Arithmetic in GF(2n) selected areas in cryptography. pp. 201- 212 ,(1998) , 10.1007/3-540-48892-8_16
Reza Azarderakhsh, Arash Reyhani-Masoleh, A modified low complexity digit-level Gaussian normal basis multiplier international conference on arithmetic of finite fields. pp. 25- 40 ,(2010) , 10.1007/978-3-642-13797-6_3
C.-Y. LEE, Low-Complexity Parallel Systolic Montgomery Multipliers over GF(2m) Using Toeplitz Matrix-Vector Representation IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences. ,vol. 91, pp. 1470- 1477 ,(2008) , 10.1093/IETFEC/E91-A.6.1470
Somsubhra Talapatra, Hafizur Rahaman, Samir K. Saha, Unified Digit Serial Systolic Montgomery Multiplication Architecture for Special Classes of Polynomials over GF(2m) digital systems design. pp. 427- 432 ,(2010) , 10.1109/DSD.2010.59
Victor S. Miller, Use of Elliptic Curves in Cryptography international cryptology conference. pp. 417- 426 ,(1985) , 10.1007/3-540-39799-X_31
M. K. Ibrahim, A. Aggoun, Dual basis digit serial GF(2(m)) multiplier. International Journal of Electronics. ,vol. 89, pp. 517- 523 ,(2002) , 10.1080/0020721021000044304
Chiou-Yng Lee, Che Wun Chiou, Scalable Gaussian Normal Basis Multipliers over GF(2 m ) Using Hankel Matrix-Vector Representation Journal of Signal Processing Systems. ,vol. 69, pp. 197- 211 ,(2012) , 10.1007/S11265-011-0654-2
B.B. Zhou, A new bit-serial systolic multiplier over GF(2/sup m/) IEEE Transactions on Computers. ,vol. 37, pp. 749- 751 ,(1988) , 10.1109/12.2216