Investigation of the relationship between the rodlet formation and Cys3-Cys4 loop of the HGFI hydrophobin.

作者: Baolong Niu , Bingzhang Li , Huifang Wang , Ruijie Guo , Haijin Xu

DOI: 10.1016/J.COLSURFB.2016.10.048

关键词: HydrophobinBiophysicsAmphiphileContact angleMicaMutant proteinCrystallographyMembraneChemistryPolystyreneDepolymerization

摘要: We used protein fusion technology to transplant the Cys3-Cys4 loop of HGFI (a class I hydrophobin from Grifola frondosa) into a nonamyloidogenic HFBI II Trichoderma reesei) and replace corresponding amino acids between Cys3 Cys4 in this identify whether renders it amyloidogenic. Water contact angle (WCA) X-ray photoelectron spectroscopy (XPS) measurements demonstrated that mutant HFBI-AR could form amphipathic membranes by self-assembling at hydrophilic mica hydrophobic polystyrene surfaces. This property enabled alter surface wettabilities as well change elemental composition siliconized glass. Atomic force microscopy (AFM) indicated that, unlike hydrophobins, no amyloid-like rodlets were observed on coated surface. Moreover, region not catalyze drive intermolecular association formation cross-β rodlet structure resist depolymerization organic solvents when self-assembled water-air interfaces. These results demonstrate is major determinant initiates or account for unique properties proteins.

参考文章(53)
M. Portaccio, A.M. Gravagnuolo, S. Longobardi, P. Giardina, I. Rea, L. De Stefano, M. Cammarota, M. Lepore, ATR FT-IR spectroscopy on Vmh2 hydrophobin self-assembled layers for Teflon membrane bio-functionalization Applied Surface Science. ,vol. 351, pp. 673- 680 ,(2015) , 10.1016/J.APSUSC.2015.05.182
Mohammadreza Khalesi, Kurt Gebruers, Guy Derdelinckx, Recent Advances in Fungal Hydrophobin Towards Using in Industry Protein Journal. ,vol. 34, pp. 243- 255 ,(2015) , 10.1007/S10930-015-9621-2
Onno M. H. de Vries, Sabine Moore, Claudia Arntz, Joseph G. H. Wessels, Paul Tudzynski, Identification and characterization of a tri-partite hydrophobin from Claviceps fusiformis. A novel type of class II hydrophobin. FEBS Journal. ,vol. 262, pp. 377- 385 ,(1999) , 10.1046/J.1432-1327.1999.00387.X
Joseph G.H. Wessels, Hydrophobins: Proteins that Change the Nature of the Fungal Surface Advances in Microbial Physiology. ,vol. 38, pp. 1- 45 ,(1997) , 10.1016/S0065-2911(08)60154-X
Harry LeVine, QUANTIFICATION OF BETA -SHEET AMYLOID FIBRIL STRUCTURES WITH THIOFLAVIN T Methods in Enzymology. ,vol. 309, pp. 274- 284 ,(1999) , 10.1016/S0076-6879(99)09020-5
William E. Klunk, Robert F. Jacob, R.Preston Mason, Quantifying amyloid by congo red spectral shift assay. Methods in Enzymology. ,vol. 309, pp. 285- 305 ,(1999) , 10.1016/S0076-6879(99)09021-7
Raimon Sabaté, Sven J. Saupe, Thioflavin T fluorescence anisotropy: an alternative technique for the study of amyloid aggregation. Biochemical and Biophysical Research Communications. ,vol. 360, pp. 135- 138 ,(2007) , 10.1016/J.BBRC.2007.06.063
Elka S. Basheva, Peter A. Kralchevsky, Krassimir D. Danov, Simeon D. Stoyanov, Theo B. J. Blijdenstein, Eddie G. Pelan, Alex Lips, Self-assembled bilayers from the protein HFBII hydrophobin: nature of the adhesion energy. Langmuir. ,vol. 27, pp. 4481- 4488 ,(2011) , 10.1021/LA2001943
A. H. Y. Kwan, R. D. Winefield, M. Sunde, J. M. Matthews, R. G. Haverkamp, M. D. Templeton, J. P. Mackay, Structural basis for rodlet assembly in fungal hydrophobins Proceedings of the National Academy of Sciences of the United States of America. ,vol. 103, pp. 3621- 3626 ,(2006) , 10.1073/PNAS.0505704103
Simon O. Lumsdon, John Green, Barry Stieglitz, Adsorption of hydrophobin proteins at hydrophobic and hydrophilic interfaces. Colloids and Surfaces B: Biointerfaces. ,vol. 44, pp. 172- 178 ,(2005) , 10.1016/J.COLSURFB.2005.06.012