Theory of quantum error correction for general noise

作者: Emanuel Knill , Raymond Laflamme , Lorenza Viola

DOI: 10.1103/PHYSREVLETT.84.2525

关键词: Block codeHamming codeAlgebraQuantum convolutional codeInformation theoryQuantum error correctionComputer scienceQuantum mechanicsOperator algebraLinear codeMeasure (mathematics)

摘要: A measure of quality an error-correcting code is the maximum number errors that it able to correct. We show a suitable notion ''number errors'' e makes sense for any quantum or classical system in presence arbitrary interactions. Thus, -error-correcting codes protect information without requiring usual assumptions independence. prove existence large both and information. By viewing as subsystems, we relate irreducible representations operator algebras noiseless subsystems are infinite-distance codes. (c) 2000 The American Physical Society.

参考文章(32)
Paul E. Schupp, Roger C. Lyndon, Combinatorial Group Theory ,(1977)
E. Knill, Approximation by Quantum Circuits arXiv: Quantum Physics. ,(1995)
Florence Jessie MacWilliams, Neil James Alexander Sloane, The Theory of Error-Correcting Codes ,(1977)
Samuel L. Braunstein, Quantum error correction of dephasing in 3 qubits arXiv: Quantum Physics. ,(1996)
Robert Alicki, Karl Lendi, Quantum Dynamical Semigroups and Applications ,(1987)
W. G. Unruh, Maintaining coherence in quantum computers Physical Review A. ,vol. 51, pp. 992- 997 ,(1995) , 10.1103/PHYSREVA.51.992
Howard Barnum, Howard Barnum, Benjamin Schumacher, M. A. Nielsen, M. A. Nielsen, Carlton M. Caves, Carlton M. Caves, Information-theoretic approach to quantum error correction and reversible measurement Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. ,vol. 454, pp. 277- 304 ,(1998) , 10.1098/RSPA.1998.0160
H. Tverberg, A Generalization of Radon's Theorem Journal of The London Mathematical Society-second Series. pp. 123- 128 ,(1966) , 10.1112/JLMS/S1-41.1.123
Lorenza Viola, Seth Lloyd, Dynamical suppression of decoherence in two-state quantum systems Physical Review A. ,vol. 58, pp. 2733- 2744 ,(1998) , 10.1103/PHYSREVA.58.2733