Microstructure and Mechanical Properties Investigation of the CoCrFeNiNbx High Entropy Alloy Coatings

作者: Hui Jiang , Kaiming Han , Dayan Li , Zhiqiang Cao

DOI: 10.3390/CRYST8110409

关键词: Eutectic systemSolid solutionComposite materialVickers hardness testSubstrate (electronics)Laves phaseMicrostructureAlloyLamellar structureMaterials science

摘要: In this work, the CoCrFeNiNbx (x: molar ratio, x = 0.45, 0.5, 0.75, and 1.0) high entropy alloy coatings were synthesized on a 304 stainless steel substrate by laser cladding to investigate effect of Nb element their microstructure, hardness, wear resistance. The results indicated that in all coatings, two phases found: One was face-centered cubic (FCC) solid solution phase, other Co1.92Nb1.08-type Laves phase. microstructures samples varied from hypoeutectic structure (x 0.45 0.5) hypereutectic 0.75 1.0). Vickers hardness obviously improved compared with substrate. value CoCrFeNiNb1.0 coating reached 590 HV, which 2.8 times higher than There also corresponding variation properties evolutions. Wherein highest exhibited best resistance under same condition, dry test showed mass loss less third considered fine lamellar eutectic proper combination FCC phases.

参考文章(42)
Ming-Hao Chuang, Ming-Hung Tsai, Woei-Ren Wang, Su-Jien Lin, Jien-Wei Yeh, Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys Acta Materialia. ,vol. 59, pp. 6308- 6317 ,(2011) , 10.1016/J.ACTAMAT.2011.06.041
N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, Y.Q. Su, J.J. Guo, H.Z. Fu, Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy Materials & Design. ,vol. 81, pp. 87- 94 ,(2015) , 10.1016/J.MATDES.2015.05.019
S. Zhang, W. Zeng, D. Zhou, Y. Lai, Hot workability of burn resistant Ti–35V–15Cr–0.3Si–0.1C alloy Materials Science and Technology. ,vol. 32, pp. 480- 487 ,(2016) , 10.1179/1743284715Y.0000000114
L Jiang, YP Lu, H Jiang, TM Wang, BN Wei, ZQ Cao, TJ Li, None, Formation rules of single phase solid solution in high entropy alloys Materials Science and Technology. ,vol. 32, pp. 588- 592 ,(2016) , 10.1179/1743284715Y.0000000130
B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George, R. O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications Science. ,vol. 345, pp. 1153- 1158 ,(2014) , 10.1126/SCIENCE.1254581
Sheng Guo, Chun Ng, Jian Lu, C. T. Liu, Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys Journal of Applied Physics. ,vol. 109, pp. 103505- ,(2011) , 10.1063/1.3587228
Yong Zhang, TingTing Zuo, YongQiang Cheng, Peter K. Liaw, High-entropy Alloys with High Saturation Magnetization, Electrical Resistivity and Malleability Scientific Reports. ,vol. 3, pp. 1455- 1455 ,(2013) , 10.1038/SREP01455
Michael Feuerbacher, Markus Heidelmann, Carsten Thomas, Hexagonal High-entropy Alloys Materials research letters. ,vol. 3, pp. 1- 6 ,(2015) , 10.1080/21663831.2014.951493
B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys Materials Science and Engineering A-structural Materials Properties Microstructure and Processing. ,vol. 375, pp. 213- 218 ,(2004) , 10.1016/J.MSEA.2003.10.257