Allometric equations for tree species and carbon stocks for forests of northwestern Mexico

作者: José Návar

DOI: 10.1016/J.FORECO.2008.09.028

关键词: Pinus engelmanniiPinus herreraePinus cooperiBiologyBotanyPinus arizonicaPinus leiophyllaPinus oocarpaDiameter at breast heightPinus teocote

摘要: Abstract Allometric equations were developed and applied to forest inventory data estimate biomass carbon stocks for temperate species forests of Durango Chihuahua tropical dry Sinaloa, Mexico. A total 872 trees harvested dissected into their component parts: leaves branches, boles, coarse roots. Coarse roots 40 ranging in diameter at breast height (DBH) from 6.0 52.9 cm excavated entirety (i.e., >0.5 cm diameter). The sampled (number trees) (39) Lysiloma divaricata (Jacq) Macbr. (10), Haematoxylon brasiletto Karst. Cochlospermum vitifolium (Wild.) (5), Ceiba acuminata (S. Watson) Rose Bursera penicillata ( B. inopinnata ) Jatropha angustifolia Mull. Arg. (4) (833) Quercus spp. (118) Q . rugosa Nee, 15, sideroxylla Humb. & Bonpl, 51, spp., 52), Pinus herrerae Martinez 1940 (19), oocarpa Schiede ex Schlectendal 1838 (31), engelmannii Carriere 1854 (7), Psudotsuga menziesii (Mirb.) Franco leiophylla et Chamisso 1831 (27), teocote (55), ayacahuite Ehrenb. Schltdl. (58), cooperi Blanco (48), durangensis 1942 (385), arizonica Engelmann 1879 (66). having only DBH as an independent variable each species. Since , Pseudotsuga menziensii had a small number trees, individual allometric equation was these We used non-linear regression fit parameters the typical power equation. resulting 31 (10 or groups species, three components; bole, branch leaves, aerial; generalized roots) well enable user predict by 10 different six single that incorporates basic specific gravity aboveground all tree also well, this provides both detail accuracy supplied species-specific, plant-part-specific equations. Biomass coupled with (637 circular, 1/10 ha plots) (166 20 m × 20 m-quadrats) northwestern Mexico mean (confidence intervals) 130 Mg ha −1 (4.2 Mg ha 73 Mg ha (7.1 Mg ha biomass, respectively. Large sample sizes economic ecological importance studied make set uniquely useful estimations understanding inherent heterogeneity structure dynamic environments

参考文章(31)
Ariel E. Lugo, Sandra Brown, Andrew J. R. Gillespie, Biomass Estimation Methods for Tropical Forests with Applications to Forest Inventory Data Forest Science. ,vol. 35, pp. 881- 902 ,(1989) , 10.1093/FORESTSCIENCE/35.4.881
Ecosystems and land use change Washington DC American Geophysical Union Geophysical Monograph Series. ,vol. 153, ,(2004) , 10.1029/GM153
R.A. Houghton, C.L. Goodale, Effects of Land‐Use Change on the Carbon Balance of Terrestrial Ecosystems Geophysical monograph. ,vol. 153, pp. 85- 98 ,(2013) , 10.1029/153GM08
Brian J. Enquist, James H. Brown, Geoffrey B. West, Allometric scaling of plant energetics and population density Nature. ,vol. 395, pp. 163- 165 ,(1998) , 10.1038/25977
Michael A Cairns, Ingrid Olmsted, Julián Granados, Jorge Argaez, Composition and aboveground tree biomass of a dry semi-evergreen forest on Mexico’s Yucatan Peninsula Forest Ecology and Management. ,vol. 186, pp. 125- 132 ,(2003) , 10.1016/S0378-1127(03)00229-9
Michael T. Ter-Mikaelian, Michael D. Korzukhin, Biomass equations for sixty-five North American tree species Forest Ecology and Management. ,vol. 97, pp. 1- 24 ,(1997) , 10.1016/S0378-1127(97)00019-4
Bernard R Parresol, Additivity of nonlinear biomass equations Canadian Journal of Forest Research. ,vol. 31, pp. 865- 878 ,(2001) , 10.1139/X00-202