作者: Abdul R. Ofoli
DOI: 10.1016/B978-0-12-811407-0.00040-4
关键词: Extended Kalman filter 、 Fuzzy logic 、 Servomotor 、 Control theory 、 Control engineering 、 PID controller 、 Power electronics 、 Sensitivity (control systems) 、 Control theory 、 Open-loop controller 、 Engineering
摘要: Abstract The use of an extended Kalman filter to train fuzzy neural network structures for online speed trajectory tracking a brushless drive system is illustrated as alternative control schemes. Also described in this chapter implementation genetic-based hybrid fuzzy-proportional-integral-derivative (PID) controller industrial motor drives. genetic optimization technique used determine the optimal values scaling factors output variables fuzzy-PID (FPID) controller. objective utilize best attributes PID and FPID controllers produce better response under disturbance. In servomotor applications where we need compensate uncertainty random changes, structure that employs fuzzy-logic incorporating H-infinity via acceleration feedback signal explained. ends with switch-mode power-stage DC-DC converters evaluates experimentally its sensitivity variable supply voltages load resistance variations.