作者: Thomas C. Kraan , Pierre van Baal
DOI: 10.1016/S0370-2693(98)00411-0
关键词: Space (mathematics) 、 Physics 、 Topological quantum number 、 Manifold 、 Moduli space 、 T-duality 、 String duality 、 Loop (topology) 、 Caloron 、 Mathematical physics
摘要: Abstract We determine all SU (2) caloron solutions with topological charge one and arbitrary Polyakov loop at spatial infinity (with trace 2cos(2 πω )), using the Nahm duality transformation ADHM. By explicit computations we show that moduli space is given by a product of base manifold R 3 × S 1 Taub-NUT mass M=1/ 8ω(1−2ω) , for ω∈[0, 2 ] in units where = / Z . Implications finite temperature field theory string between Kaluza-Klein H-monopoles are briefly discussed.