Exact T-duality between calorons and Taub-NUT spaces

作者: Thomas C. Kraan , Pierre van Baal

DOI: 10.1016/S0370-2693(98)00411-0

关键词: Space (mathematics)PhysicsTopological quantum numberManifoldModuli spaceT-dualityString dualityLoop (topology)CaloronMathematical physics

摘要: Abstract We determine all SU (2) caloron solutions with topological charge one and arbitrary Polyakov loop at spatial infinity (with trace 2cos(2 πω )), using the Nahm duality transformation ADHM. By explicit computations we show that moduli space is given by a product of base manifold R 3 × S 1 Taub-NUT mass M=1/ 8ω(1−2ω) , for ω∈[0, 2 ] in units where = / Z . Implications finite temperature field theory string between Kaluza-Klein H-monopoles are briefly discussed.

参考文章(35)
R. Rajaraman, Solitons and instantons ,(1982)
Clifford Henry Taubes, Morse Theory and Monopoles: Topology in Long Range Forces Springer, Boston, MA. pp. 563- 587 ,(1984) , 10.1007/978-1-4757-0280-4_20
P. B. Kronheimer, Simon K. Donaldson, The Geometry of Four-Manifolds ,(1990)
J. P. Gauntlett, J. A. Harvey, S-Duality and the Spectrum of Magnetic Monopoles in Heterotic String Theory arXiv: High Energy Physics - Theory. ,(1994)
W. Nahm, Self-dual monopoles and calorons Group Theoretical Methods in Physics. ,vol. 201, pp. 189- 200 ,(1984) , 10.1007/BFB0016145
Stephen W. Hawking, W. Israel, General Relativity; an Einstein Centenary Survey ,(1979)
Ruth Gregory, Jeffrey A. Harvey, Gregory Moore, Unwinding strings and T-duality of Kaluza–Klein and H-monopoles Advances in Theoretical and Mathematical Physics. ,vol. 1, pp. 283- 297 ,(1997) , 10.4310/ATMP.1997.V1.N2.A6
S. K. Donaldson, Nahm's equations and the classification of monopoles Communications in Mathematical Physics. ,vol. 96, pp. 387- 407 ,(1984) , 10.1007/BF01214583
E.F. Corrigan, D.B. Fairlie, S. Templeton, P. Goddard, A green function for the general self-dual gauge field Nuclear Physics. ,vol. 140, pp. 31- 44 ,(1978) , 10.1016/0550-3213(78)90311-5
Nigel J Hitchin, Anders Karlhede, Ulf Lindström, Martin Roček, Hyperkähler metrics and supersymmetry Communications in Mathematical Physics. ,vol. 108, pp. 535- 589 ,(1987) , 10.1007/BF01214418