The Geometry of Calorons

作者: Tom M. W. Nye

DOI:

关键词:

摘要: Calorons (periodic instantons) are anti-self-dual (ASD) connections on S^1 \times R^3 and form an intermediate case between instantons monopoles. The ADHM Nahm constructions of monopoles can be regarded as generalizations a correspondence ASD the 4-torus, often referred to transform. This thesis describes how transform extended calorons. It is shown calorons constructed from data similar that for monopoles, but defined over circle. inverse transformation, caloron data, also described.

参考文章(32)
Rafe Mazzeo, Richard B. Melrose, PSEUDODIFFERENTIAL OPERATORS ON MANIFOLDS WITH FIBRED BOUNDARIES Asian Journal of Mathematics. ,vol. 2, pp. 833- 866 ,(1998) , 10.4310/AJM.1998.V2.N4.A9
Richard B. Melrose, Geometric scattering theory Cambridge University Press. ,(1995)
P. B. Kronheimer, Simon K. Donaldson, The Geometry of Four-Manifolds ,(1990)
Nicolae Anghel, An abstract index theorem on non-compact Riemannian manifolds Houston Journal of Mathematics. ,vol. 19, pp. 223- 237 ,(1993)
Lars Hörmander, The analysis of linear partial differential operators Springer-Verlag. ,(1990)
S. K. Donaldson, Nahm's equations and the classification of monopoles Communications in Mathematical Physics. ,vol. 96, pp. 387- 407 ,(1984) , 10.1007/BF01214583
Thomas C. Kraan, Pierre van Baal, Exact T-duality between calorons and Taub-NUT spaces Physics Letters B. ,vol. 428, pp. 268- 276 ,(1998) , 10.1016/S0370-2693(98)00411-0
Constantine Callias, Axial anomalies and index theorems on open spaces Communications in Mathematical Physics. ,vol. 62, pp. 213- 234 ,(1978) , 10.1007/BF01202525