A Cut Finite Element Method with Boundary Value Correction

作者: Peter Hansbo , Erik Burman , Mats G. Larson

DOI:

关键词: Taylor seriesFinite element methodNormalQuadrature (mathematics)MathematicsComputationDirichlet conditionsA priori and a posterioriApplied mathematicsFictitious domain method

摘要: In this contribution we develop a cut finite element method with boundary value correction of the type originally proposed by Bramble, Dupont, and Thomee. The is fictitious domain Nitsche enforcement Dirichlet conditions together stabilization elements at which stable enjoy optimal order approximation properties. A computational difficulty is, however, geometric computations related to quadrature on must be accurate enough achieve higher approximation. With may use only piecewise linear boundary, very convenient in method, still obtain convergence. modified formulation involving Taylor expansion normal direction compensating for boundary. Key analysis consistent term enables us prove stability priori error estimates explicit dependence meshsize distance between exact approximate

参考文章(8)
Jamshid Parvizian, Alexander Düster, Ernst Rank, Finite cell method Computational Mechanics. ,vol. 41, pp. 121- 133 ,(2007) , 10.1007/S00466-007-0173-Y
M. Tur, J. Albelda, E. Nadal, J. J. Ródenas, Imposing Dirichlet boundary conditions in hierarchical Cartesian meshes by means of stabilized Lagrange multipliers International Journal for Numerical Methods in Engineering. ,vol. 98, pp. 399- 417 ,(2014) , 10.1002/NME.4629
James H. Bramble, Todd Dupont, Vidar Thom{ée, Projection methods for Dirichlet’s problem in approximating polygonal domains with boundary-value corrections Mathematics of Computation. ,vol. 26, pp. 869- 879 ,(1972) , 10.1090/S0025-5718-1972-0343657-7
L. Ridgway Scott, Shangyou Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions Mathematics of Computation. ,vol. 54, pp. 483- 493 ,(1990) , 10.1090/S0025-5718-1990-1011446-7
J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind Abhandlungen Aus Dem Mathematischen Seminar Der Universitat Hamburg. ,vol. 36, pp. 9- 15 ,(1971) , 10.1007/BF02995904
Joan Baiges, Ramon Codina, Florian Henke, Shadan Shahmiri, Wolfgang A. Wall, A symmetric method for weakly imposing Dirichlet boundary conditions in embedded finite element meshes International Journal for Numerical Methods in Engineering. ,vol. 90, pp. 636- 658 ,(2012) , 10.1002/NME.3339
Ramon Codina, Joan Baiges, Approximate imposition of boundary conditions in immersed boundary methods International Journal for Numerical Methods in Engineering. ,vol. 80, pp. 1379- 1405 ,(2009) , 10.1002/NME.2662
Roland Becker, Erik Burman, Peter Hansbo, A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity Computer Methods in Applied Mechanics and Engineering. ,vol. 198, pp. 3352- 3360 ,(2009) , 10.1016/J.CMA.2009.06.017