Existence of closed geodesics on positively curved Finsler manifolds

作者: HANS-BERT RADEMACHER

DOI: 10.1017/S0143385706001064

关键词: GeodesicMathematicsMathematical analysisFinsler manifoldFlag (geometry)Curvature

摘要: For non-reversible Finsler metrics of positive flag curvature on spheres and projective spaces we present results about the number length closed geodesics their stability properties.

参考文章(8)
Hans-Bert Rademacher, On the average indices of closed geodesics Journal of Differential Geometry. ,vol. 29, pp. 65- 83 ,(1989) , 10.4310/JDG/1214442633
W. Ballmann, G. Thorbergsson, W. Ziller, Existence of closed geodesics on positively curved manifolds Journal of Differential Geometry. ,vol. 18, pp. 221- 252 ,(1983) , 10.4310/JDG/1214437662
Hans-Bert Rademacher, A sphere theorem for non-reversible Finsler metrics Mathematische Annalen. ,vol. 328, pp. 373- 387 ,(2004) , 10.1007/S00208-003-0485-Y
Raoul Bott, On the iteration of closed geodesics and the sturm intersection theory Communications on Pure and Applied Mathematics. ,vol. 9, pp. 171- 206 ,(1956) , 10.1002/CPA.3160090204
Wolfgang Ziller, Geometry of the Katok examples Ergodic Theory and Dynamical Systems. ,vol. 3, pp. 135- 157 ,(1983) , 10.1017/S0143385700001851
W. Ballmann, G. Thorbergsson, W. Ziller, Closed Geodesics on Positively Curved Manifolds The Annals of Mathematics. ,vol. 116, pp. 213- 247 ,(1982) , 10.2307/2007062
Hans-Bert Rademacher, The Fadell-Rabinowitz Index and Closed Geodesics Journal of the London Mathematical Society. ,vol. 50, pp. 609- 624 ,(1994) , 10.1112/JLMS/50.3.609
Gudlaugur Thorbergsson, Non-hyperbolic closed geodesics. Mathematica Scandinavica. ,vol. 44, pp. 135- 148 ,(1979) , 10.7146/MATH.SCAND.A-11799