The length of a shortest geodesic loop

作者: Hans-Bert Rademacher

DOI: 10.1016/J.CRMA.2008.06.001

关键词: Metric (mathematics)GeodesicCurvatureUpper and lower boundsLoop (topology)CombinatoricsManifoldMathematical analysisConvexityMathematicsFlag (linear algebra)General Mathematics

摘要: Abstract We give a lower bound for the length of non-trivial geodesic loop on simply-connected and compact manifold even dimension with non-reversible Finsler metric positive flag curvature. Harris Paternain use this estimate in their recent paper to geometric characterization dynamically convex metrics 2-sphere. To cite article: H.-B. Rademacher, C. R. Acad. Sci. Paris, Ser. I 346 (2008).

参考文章(6)
Hans-Bert Rademacher, A sphere theorem for non-reversible Finsler metrics Mathematische Annalen. ,vol. 328, pp. 373- 387 ,(2004) , 10.1007/S00208-003-0485-Y
Adam Harris, Gabriel P. Paternain, Dynamically convex Finsler metrics and $J$-holomorphic embedding of asymptotic cylinders Annals of Global Analysis and Geometry. ,vol. 34, pp. 115- 134 ,(2008) , 10.1007/S10455-008-9111-2
HANS-BERT RADEMACHER, Existence of closed geodesics on positively curved Finsler manifolds Ergodic Theory and Dynamical Systems. ,vol. 27, pp. 957- 969 ,(2007) , 10.1017/S0143385706001064
H. Hofer, K. Wysocki, E. Zehnder, The dynamics on three-dimensional strictly convex energy surfaces Annals of Mathematics. ,vol. 148, pp. 197- 289 ,(1998) , 10.2307/120994
W. Klingenberg, Contributions to Riemannian Geometry in the Large The Annals of Mathematics. ,vol. 69, pp. 654- ,(1959) , 10.2307/1970029
YIMING LONG, Multiplicity and stability of closed geodesics on Finsler 2-spheres Journal of the European Mathematical Society. ,vol. 8, pp. 341- 353 ,(2006) , 10.4171/JEMS/56