Symmetric periodic orbits and invariant disk-like global surfaces of section on the three-sphere.

作者: Seongchan Kim

DOI:

关键词:

摘要: We study Reeb dynamics on the three-sphere equipped with a tight contact form and an anti-contact involution. prove existence of symmetric periodic orbit provide necessary sufficient conditions for it to bound invariant disk-like global surface section. also same questions under presence additional symmetry obtain similar results in this case. The proofs make use pseudoholomorphic curves symplectizations. As applications, we Birkhoff's conjecture surfaces section planar circular restricted three-body problem closed Finsler geodesics two-sphere. present applications some classical Hamiltonian systems.

参考文章(51)
Roberto Giambò, Fabio Giannoni, Paolo Piccione, Multiple brake orbits in $$m$$ m -dimensional disks Calculus of Variations and Partial Differential Equations. ,vol. 54, pp. 2553- 2580 ,(2015) , 10.1007/S00526-015-0875-5
R. C. Churchill, G. Pecelli, D. L. Rod, A survey of the Hénon-Heiles Hamiltonian with applications to related examples Stochastic Behavior in Classical and Quantum Hamiltonian Systems. ,vol. 93, pp. 76- 136 ,(1979) , 10.1007/BFB0021739
Hans-Bert Rademacher, A sphere theorem for non-reversible Finsler metrics Mathematische Annalen. ,vol. 328, pp. 373- 387 ,(2004) , 10.1007/S00208-003-0485-Y
Joel Robbin, Dietmar Salamon, The Maslov index for paths Topology. ,vol. 32, pp. 827- 844 ,(1993) , 10.1016/0040-9383(93)90052-W
C. Grotta-Ragazzo, M. Kulesza, P.A.S. Salomão, Equatorial dynamics of charged particles in planetary magnetospheres Physica D: Nonlinear Phenomena. ,vol. 225, pp. 169- 183 ,(2007) , 10.1016/J.PHYSD.2006.10.009
Hans-Bert Rademacher, The length of a shortest geodesic loop Comptes Rendus Mathematique. ,vol. 346, pp. 763- 765 ,(2008) , 10.1016/J.CRMA.2008.06.001
Michel Henon, Carl Heiles, The applicability of the third integral of motion: Some numerical experiments The Astronomical Journal. ,vol. 69, pp. 73- 79 ,(1964) , 10.1086/109234
Helmut Hofer, Kris Wysocki, Eduard Zehnder, Finite energy foliations of tight three-spheres and Hamiltonian dynamics Annals of Mathematics. ,vol. 157, pp. 125- 255 ,(2003) , 10.4007/ANNALS.2003.157.125
Pedro A. S. Salomão, Convex energy levels of Hamiltonian systems Qualitative Theory of Dynamical Systems. ,vol. 4, pp. 439- 454 ,(2004) , 10.1007/BF02970869
H. Seifert, Periodische Bewegungen mechanischer Systeme Mathematische Zeitschrift. ,vol. 51, pp. 197- 216 ,(1948) , 10.1007/BF01291002