Improving γ-ray energy resolution, non-proportionality, and decay time of NaI:Tl+ with Sr2+ and Ca2+ co-doping

作者: K. Yang , P. R. Menge

DOI: 10.1063/1.4937126

关键词: DopingChemistryResolution (electron density)RadiochemistrySodium iodideThalliumAlkaline earth metalScintillatorCrystalScintillation

摘要: Commercially available thallium activated sodium iodide scintillators are typically characterized by a γ-ray energy resolution of 6.5% at 662 keV and scintillation decay time constant 230 ns. Energy resolution, non-proportionality, improved when the crystal is co-doped with alkaline earth metals (Sr2+ Ca2+). The NaI:Tl+ to 5.3%, simultaneously reduced 170 ns Sr2+ Ca2+ co-doping. improvement in likely due suppression slow processes NaI:Tl+.

参考文章(26)
I. V. Khodyuk, S. A. Messina, T. J. Hayden, E. D. Bourret, G. A. Bizarri, Optimization of scintillation performance via a combinatorial multi-element co-doping strategy: Application to NaI:Tl Journal of Applied Physics. ,vol. 118, pp. 084901- ,(2015) , 10.1063/1.4928771
Rajendra Adhikari, Qi Li, Richard T. Williams, Arnold Burger, Koushik Biswas, DX-like centers in NaI:Tl upon aliovalent codoping Journal of Applied Physics. ,vol. 116, pp. 223703- ,(2014) , 10.1063/1.4903766
R.H. Bartram, L.A. Kappers, D.S. Hamilton, A. Lempicki, C. Brecher, J. Glodo, V. Gaysinskiy, E.E. Ovechkina, Suppression of afterglow in CsI:Tl by codoping with Eu2+—II: Theoretical model Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment. ,vol. 558, pp. 458- 467 ,(2006) , 10.1016/J.NIMA.2005.11.051
M. Moszyński, A. Nassalski, A. Syntfeld-Każuch, T. Szczęśniak, W. Czarnacki, D. Wolski, G. Pausch, J. Stein, Temperature dependences of LaBr3(Ce), LaCl3(Ce) and NaI(Tl) scintillators Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment. ,vol. 568, pp. 739- 751 ,(2006) , 10.1016/J.NIMA.2006.06.039
Robert Hofstadter, The Detection of Gamma-Rays with Thallium-Activated Sodium Iodide Crystals Physical Review. ,vol. 75, pp. 796- 810 ,(1949) , 10.1103/PHYSREV.75.796
P. Dorenbos, J.T.M. de Haas, C.W.E. van Eijk, Non-proportionality in the scintillation response and the energy resolution obtainable with scintillation crystals IEEE Transactions on Nuclear Science. ,vol. 42, pp. 2190- 2202 ,(1995) , 10.1109/23.489415
K.D. Ianakiev, B.S. Alexandrov, P.B. Littlewood, M.C. Browne, Temperature behavior of NaI (Tl) scintillation detectors Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment. ,vol. 607, pp. 432- 438 ,(2009) , 10.1016/J.NIMA.2009.02.019
H.B. Dietrich, R.B. Murray, Kinetics of the diffusion of self-trapped holes in alkali halide scintillators Journal of Luminescence. ,vol. 5, pp. 155- 170 ,(1972) , 10.1016/0022-2313(72)90039-7
Sebastien Kerisit, Zhiguo Wang, Richard T. Williams, Joel Q. Grim, Fei Gao, Kinetic Monte Carlo Simulations of Scintillation Processes in NaI(Tl) IEEE Transactions on Nuclear Science. ,vol. 61, pp. 860- 869 ,(2014) , 10.1109/TNS.2014.2300142
M. Moszyński, Inorganic scintillation detectors in γ-ray spectrometry Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment. ,vol. 505, pp. 101- 110 ,(2003) , 10.1016/S0168-9002(03)01030-1