Equilibrium Kawasaki dynamics of continuous particle systems

作者: YURI KONDRATIEV , EUGENE LYTVYNOV , MICHAEL RÖCKNER

DOI: 10.1142/S0219025707002695

关键词: Interacting particle systemMarkov processParticle systemDissipative particle dynamicsClassical mechanicsScaling limitRiemannian manifoldGlauberGibbs measureStatistical physicsPhysics

摘要: We construct a new equilibrium dynamics of infinite particle systems in Riemannian manifold X. This is an analog the Kawasaki lattice spin systems. The now process where interacting particles randomly hop over establish conditions on priori explicitly given symmetrizing measure and generator this dynamics, under which corresponding conservative Markov processes exists. also outline two types scaling limit dynamics: one leading to Glauber continuum (a birth-and-death process), other diffusion (in particular, gradient stochastic dynamics).

参考文章(31)
Chris Preston, Spatial birth and death processes Advances in Applied Probability. ,vol. 7, pp. 465- 466 ,(1975) , 10.1017/S0001867800040726
Anna De Masi, Errico Presutti, Mathematical Methods for Hydrodynamic Limits Lecture Notes in Mathematics. ,(1991) , 10.1007/BFB0086457
Michael Röckner, Zhi-Ming Ma, Construction of diffusions on configuration spaces Osaka Journal of Mathematics. ,vol. 37, pp. 273- 314 ,(2000) , 10.18910/11049
Masatoshi Fukushima, Yoichi Oshima, Masayoshi Takeda, Dirichlet forms and symmetric Markov processes ,(1994)
Thomas M. Liggett, Interacting Particle Systems ,(1985)
Tobias Kuna, Yuri Kondratiev, Jose Luis Silva, Marked Gibbs measures via cluster expansion arXiv: Mathematical Physics. ,(1999)
Martin Grothaus, Scaling limit of fluctuations for the equilibrium Glauber dynamics in continuum Journal of Functional Analysis. ,vol. 239, pp. 414- 445 ,(2006) , 10.1016/J.JFA.2006.05.017
Y KONDRATIEV, E LYTVYNOV, Glauber dynamics of continuous particle systems Annales De L Institut Henri Poincare-probabilites Et Statistiques. ,vol. 41, pp. 685- 702 ,(2005) , 10.1016/J.ANIHPB.2004.05.002